Question 1		
(a)	using $Q = mc\Delta\theta$	
	= 3.00 × 440 × (84-27) ✓	2
	7.5 × 10 ⁴ (J) ✓	
(b)	using $Q = mI$	
	$= 1.20 \times 2.5 \times 10^4$	1
	$= 3.0 \times 10^4 (J) \checkmark$	
(c)	(heat supplied by lead changing state + heat supplied by cooling lead = heat gained by iron)	
	3.0×10^4 + heat supplied by cooling lead = $7.5 \times 10^4 \checkmark$	
	heat supplied by cooling lead = $4.5 \times 10^4 = mc\Delta\theta$	3
	$c = 4.5 \times 10^4 / (1.2 \times (327 - 84) \checkmark$	
	$c = 154 (J kg^{-1} K^{-1}) \checkmark$	
(d)	any one idea ✓	
	no allowance has been made for heat loss to the surroundings	1
	or the specific heats may not be a constant over the range of temperatures calculated	
	Total	7

GCE Physics, Specification A, PHYA5/2A, Section A, Nuclear and Thermal Physics

Question 2		
(a)	The candidate's writing should be legible and the spelling, punctuation and grammar should be sufficiently accurate for the meaning to be clear.	
	The candidate's answer will be assessed holistically. The answer will be assigned to one of three levels according to the following criteria.	
	High Level (Good to excellent): 5 or 6 marks	
	The information conveyed by the answer is clearly organised, logical and coherent, using appropriate specialist vocabulary correctly. The form and style of writing is appropriate to answer the question.	
	The candidate can explain the role of the moderator and control rods in maintaining a critical condition inside the reactor. The explanation is given in a clear sequence of events and the critical condition is defined in terms of neutrons. To obtain the top mark some other detail must be included. Such as, one of the alternative scattering or absorbing possibilities or appropriate reference to critical mass or detailed description of the feedback to adjust the position of the control rods etc.	
	Intermediate Level (Modest to adequate): 3 or 4 marks	
	The information conveyed by the answer may be less well organised and not fully coherent. There is less use of specialist vocabulary, or specialist vocabulary may be used incorrectly. The form and style of writing is less appropriate.	max 6
	The candidate has a clear idea of two of the following: the role of the moderator, the role of the control rods or can explain the critical condition.	
	Low Level (Poor to limited): 1 or 2 marks	
	The information conveyed by the answer is poorly organised and may not be relevant or coherent. There is little correct use of specialist vocabulary. The form and style of writing may be only partly appropriate.	
	The candidate explains that a released neutron is absorbed by uranium to cause a further fission. Alternatively the candidate may explain one of the following:	
	the role of the moderator, the role of the control rods or can explain the critical condition.	
	The explanation expected could include the following events that could happen to a released neutron.	
	a neutron is slowed by the moderator	
	taking about 50 collisions to reach thermal speeds	
	then absorbed by uranium-235 to cause a fission event	
	condition	
	a neutron may leave the reactor core without further interaction	
	a neutron could be absorbed by uranium-238	
	a neutron could be absorbed by a control rod	
	a neutron could be scattered by uranium-238	
	a neutron could be scattered by uranium-235	

(b)	it is easy to stay out of range or easy to contain an α source or β/γ have greater range/are more difficult to screen \checkmark most (fission fragments) are (more) radioactive/unstable \checkmark and are initially most likely to be beta emitters/(which also) emit γ radiation/are neutron rich/heavy \checkmark ionising radiation damages body tissue/is harmful \checkmark	max 3
	Total	9

Question 3		
(a)	probability of decay per unit time/given time period	
	or fraction of atoms decaying per second	
	or the rate of radioactive decay is proportional to the number of (unstable) nuclei	1
	and nuclear decay constant is the constant of proportionality \checkmark	
(b)	use of $T_{\frac{1}{2}} = \frac{ln2}{\lambda}$	
	$T_{\frac{1}{2}} = \ln 2/3.84 \times 10^{-12} \mathrm{s} \checkmark (1.805 \times 10^{11} \mathrm{s})$	3
	= $(1.805 \times 10^{11}/3.15 \times 10^7) = 5730 \mathrm{y} \checkmark$	
	answer given to 3 sf \checkmark	
(C)	number of nuclei = $N = 3.00 \times 10^{23} \times 1/10^{12} \checkmark$	
	(= 3.00 × 10 ¹¹ nuclei)	
	$(\text{using } \frac{\Delta N}{\Delta t} = -\lambda N)$	2
	rate of decay = $3.84 \times 10^{-12} \times 3.00 \times 10^{11} \checkmark$	
	(= 1.15 Bq)	
(d)	$(N = N_0 e^{-\lambda t}$ and activity is proportional to the number of nuclei $A \propto N$ use of $A = A_0 e^{-\lambda t}$)	
	$0.65 = 1.15 \times e^{-3.84 \times 10^{-12}t} \checkmark$	_
	$t = \frac{ln(\frac{1.15}{0.65})}{3.84 \times 10^{-12}} \text{ or } \frac{ln(\frac{0.651}{1.15})}{-3.84 \times 10^{-12}} \checkmark$	3
	<i>t</i> = 4720 y ✓	
(e)	the boat may have been made with the wood some time after the tree was cut down	
	the background activity is high compared to the observed count rates	
	the count rates are low or sample size/mass is small or there is statistical variation in the recorded results	2
	possible contamination	
	uncertainty in the ratio of carbon-14 in carbon thousands of years ago	
	any two 🗸	
	Total	11

Question 4		
(a)	pressure/10 ⁴ Pa 30 15 10 10 10 10 10 10 10 10 10 10	3
(b) (i)	$N = PV/kT = 5 \times 10^{4} \times 2 \times 10^{-3}/1.38 \times 10^{-23} \times 290 \checkmark$ [or alternative use of $PV = nRT$ $5 \times 10^{4} \times 2.0 \times 10^{-3}/8.31 \times 290 = 0.0415$ moles] $= 2.50 \times 10^{22}$ molecules \checkmark	2
(b) (ii)	(mean) kinetic energy of a molecule = $\frac{3}{2}kT = \frac{3}{2} \times 1.38 \times 10^{-23} \times 290 \checkmark$ (= 6.00 × 10 ⁻²¹ J) (total kinetic energy = mean kinetic energy × N) = 6.00 × 10 ⁻²¹ × 2.50 × 10 ²² ✓ = 150 (J) ✓	3

	Total	12
	and of negligible duration	
	collisions are elastic or kinetic energy is conserved	
	no force act between molecules except during collisions or the speed/velocity is constant between collisions or motion is in a straight line between collisions	
	the volume of gas molecules is negligible (compared to the volume occupied by the gas) or reference to point masses	max 4
	gas contains a large number of molecules	
	Newtonian mechanics apply	
	molecules/atoms are in random motion	
(C)	all molecules/atoms are identical	