

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

PHYSICS B (ADVANCING PHYSICS) G495 MS

Unit G495: Field and Particle Pictures and Advances in Physics

Specimen Mark Scheme

The maximum mark for this paper is **100**.

Section A			
Question Number	Answer	Max Mark	
1(a) (b)	In any order: uud \checkmark Accept +2/3e, +2/3e,-1/3e In any order: udd \checkmark Accept +2/3e, -1/3e,-1/3e	[1]	
2	mass change = 3.0001 60 – 2.001 41 – 1.008 67 = -0.008 48 ✓	[1]	
	$m = 0.008 \ 48 \times 1.7 \times 10^{-27} = 1.44 \times 10^{-29} \ \text{kg} \checkmark$ $E \ (=mc^2) = 1.44 \times 10^{-29} \times (3 \times 10^8)^2 = 1.3 \times 10^{-12} \ \text{J} \checkmark$ ecf from previous stage throughout Accept reverse calculation	[3]	
3(a)	$E = hf = 6.6 \times 10^{-34} \times 1.2 \times 10^{15} = 7.9 \times 10^{-19} \text{ J} \checkmark$	[1]	
(b)	Ignore direction of arrow		
	-16.7 × 10 ⁻¹⁹ J	[1]	
(c)	A✓		
4(a)	0.1 m ↓ P Vertical <u>and</u> downwards ✓		
	-160 KV	[1]	
(b)	-80 kV ✓	[1]	
(c)	At right angles to field arrow ✓ Complete circle through P centred on sphere ✓ Ignore arrows on equipotential	[2]	

Section A		
Question Number	Answer	Max Mark
5(a)	5 cm = 5 × 10 ⁻² m, 25 mT = 25 × 10 ⁻³ T \checkmark	
	$F = ILB = 2.0 \times 5 \times 10^{-2} \times 25 \times 10^{-3} = 2.5 \times 10^{-3} \text{ N} \checkmark$ Ecf incorrect conversion	
		[2]
(b)	C✓	[1]
6(a)	В✓	[1]
(b)	A✓	[1]
(c)	C✓	
		[1]
7	C✓	[1]
	Section A Total	[19]

Section B			
Question Number	Answer	Max Mark	
8(a)	Flux lines stay within iron \checkmark Two <u>complete</u> and <u>separate</u> loops which do not overlap. \checkmark	F01	
(b)	Correct shape (sinusoidal) and period (by eye), any constant amplitude \checkmark	[2]	
	Correct phase (90° ahead or behind)	[2]	
(0)	$V_{p} = N_{p} \frac{d\Phi}{dt}, V_{s} = N_{s} \frac{d\Phi}{dt}$ owthe		
	$\frac{d\Phi}{dt} = \frac{V_p}{N_p} = \frac{V_s}{N_s} \text{ owtte}\checkmark$	[2]	
(d)	 any of the following, maximum [3 √√√] Change of flux/field in the core 		
	Sets up emf across core		
	Causing current to now		
	 Which opposes original change of flux/statement of Lenz's Law 		
	'Reduces the flux' is neutral.		
	QWC: clear organised answer	[3]	
	Total	[9]	
9(a)	Alpha (particle) / helium (nucleus) / α 🗸	[1]	
(b)	mass of nucleus = $178 \times 1.7 \times 10^{-27}$ kg = 3.0×10^{-25} kg \checkmark		
	mass of sample		
	mass of nucleus		
	e.g. nuclei = $5 \times 10^{-12}/3.0 \times 10^{-25} = 1.7 \times 10^{13}$		
	$A = \lambda N \checkmark$		
	EITHER $A = 7.1 \times 10^{-10} \times 2 \times 10^{16} = 1.4 \times 10^{7}$		
	OR $A = 7.1 \times 10^{-10} \times 1.7 \times 10^{16} = 1.2 \times 10^7 \checkmark$		
	Accept 2.98×10 ⁻²⁵ .		
	or 2.97×10 ⁻²⁵ ,		
	or 2.96×10 ⁻²⁵		
	Award mark for eor, not final answer		
	Ecf 9 b ii		
	Accept s ⁻¹ but not Hz for Bq	[5]	
(c)(i)	$f = c/\lambda = 3 \times 10^8 / 6.2 \times 10^{-11} = 4.8 \times 10^{18} \text{ Hz } \checkmark$		
	$E = hf = 6.6 \times 10^{-34} \times 4.8 \times 10^{18} = 3.2 \times 10^{-15} \text{ J} \checkmark$		
	$E = 3.2 \times 10^{10} / 1.6 \times 10^{10} (= 2 \times 10^{10} \text{ eV}) \checkmark$		
	ecf incorrect E	[3]	
		L*J	

Question Number	Answer	Max Mark
9(c)(ii)	larger decay constant \rightarrow greater probability of decay \checkmark	
	(Can discuss in term of $A = \lambda N$)	
	Nuclei in level K will decay at a greater rate than those in level M \checkmark	
	(Can refer to shorter half-life)	
	Overall activity of sample will increase \checkmark	
	Needs comparison with nuclei in level M stated or implied	[3]
	Total	[12]
40(-)	Coloriation of energy from more $\Gamma = m^2$ (
10(a)	Calculation of energy from mass: $E = mc$ V	
	Conversion of many or operative	
	$1.7 \times 10^{-27} \times (3.0 \times 10^8)^2 = 1.53 \times 10^{-10}$	
	$1.53 \times 10^{-10} / 1.6 \times 10^{-19} = 9.56 \times 10^{8} \text{ eV}$	
	$270 \times 10^9 / = 282 \sim 300$	
	OR	
	$300 \times 1.7 \times 10^{-27} = 5.10 \times 10^{-10}$	
	$5.10 \times 10^{-10} \times (3.0 \times 10^8)^2 = 4.59 \times 10^{-8}$ J	
	$4.59 \times 10^{-8} / 1.6 \times 10^{-19} = 2.87 \times 10^{11} \text{ eV} (287 \text{ GeV})$	
	Accept correct alternative calculation	[3]
(b)(i)	$F = mv^2/r \checkmark$	F - T
(~)(')	$F = \alpha v B$ so $\alpha v B = m v^2 / r \sqrt{2}$	
	R = mv/Bq	
	$qvB = mv^2/r$ is $\sqrt{}$	[3]
(ii)	$B = E/cgr = 4.3 \times 10^8 / 3 \times 10^8 \times 1.8 \times 10^3 \times 1.6 \times 10^{-19}$	• •
()	$= 0.5 \text{ T} \sqrt{\text{m}} \text{ e}$	[2]
(c)(i)	Opposite charges (allow magnetic force to be in opposite directions) \checkmark	
	NOT different charge	[1]
(iii)	$07 \times 02 \times 02 \times 10$	
(1)	$_{0} \angle \rightarrow_{-1} e_{++1} e_{++1} e_{++1} e_{++1} e_{++1} e_{+++1} e_{+++1} e_{+++1} e_{++++++} e_{++++++++++++++++++++++++++++++++++++$	[0]
(111)	Award [*] If one endl. Accept p for e	[4]
(111)	EIIHER	
	find the energies of electron and positron and finding that they add to $\frac{1}{2}$	
	OR	
	energy of proton and antiproton / colliding particles	
	must add to (at least) 93 GeV ✓	
	Any plausible technique	[1]
	Total	[12]
	10141	['4]
11(a)(i)	$24 \times 10^{16} / 4\pi \times 100 = 1.9 \times 10^{13} \checkmark$	[1]
···(~/\'/	$2.1 \times 10^{-7} + \pi \times 100 = 1.0^{-10} \times 10^{-7}$	[1]

Section B			
Question Number	Answer	Max Mark	
11(a)(ii)	 any of the following, maximum [2√] Photons fired out from source in all directions Getting more spread out as they travel out So photons passing through unit area decreases with increasing distance from source All photons per second pass through surface of sphere radius <i>d</i> Fraction per unit area through this surface is 1/4π<i>d</i>² NOT photons are absorbed / lose energy / decay 	[2]	
(iii)	beta absorbed by air / have limited range owtte \checkmark	[4]	
(iii) (iii)	Number of half-thicknesses = $1.2 / 4.0 \times 10^{-2} = 30 \checkmark$ $I = I_0 (0.5)^n$ eor $I = 1.9 \times 10^{13} \times (0.5)^{30} = 1.8 \times 10^4$ Bq m ⁻² \checkmark Accept calculation using $I = I_0 e^{-\mu x}$ $2 \times 10^{13} \Rightarrow 1.9 \times 10^4$ Bq m ⁻² energy= intensity × area × time× photon energy eor \checkmark $1.8 \times 10^4 \times 0.8 \times 2600 \times 8 \times 1.8 \times 10^{-13}$	[2]	
	$1.8 \times 10^{4} \times 0.8 \times 3600 \times 8 \times 1.8 \times 10^{10}$ = 7.5 × 10 ⁻⁵ J ≈ 1 × 10 ⁻⁴ J ✓ dose = $\frac{\text{energy} \times \text{quality factor}}{\text{mass}}$ eor ✓ dose = 7.5 × 10 ⁻⁵ / 75 = 1.0 × 10 ⁻⁶ Sv ✓ 2 × 10 ⁴ Bq m ⁻² gives 8.3×10 ⁻⁵ J 1.9 × 10 ⁴ Bq m ⁻² gives 7.9×10 ⁻⁵ J ecf incorrect energy 1×10 ⁻⁴ J ⇒ 1.3×10 ⁻⁶ Sv		
	accept reverse calculation	[4]	
	Total	[10]	
	Section B Total	[43]	

Question	Max
Number Answer N	Mark
12 (a) $1/_{2}mv^{2} = 8.6 \times 10^{-13} \text{ J} \Rightarrow v = \sqrt{\frac{2 \times 8.6 \times 10^{-13}}{6.6 \times 10^{-27}}} \checkmark \text{m}$ $= 1.6 \times 10^{7} \text{ m s}^{-1} \checkmark \text{e}$ Evidence of calculation required for second mark	
(b)(i) ora from $v=2 \times 10^7 \text{ m s}^{-1}$ (b)(i) $206 \checkmark$	[2] [1]
(II) $0=206v + 4 \times 2 \times 10^{7} \text{ m s}^{-1} \Rightarrow v = (-) 3.9 \times 10^{8} \text{ m s}^{-1} \vee$ (Evidence of calculation required for second mark.) First mark is application of conservation of momentum Using $1.6 \times 10^{7} \text{ m s}^{-1} \Rightarrow v = 3.1 \times 10^{5} \text{ m s}^{-1}$ Can use masses in kg Can refer to same <i>p</i> to justify <i>m/v</i> relationship Arithmetic method OK	[2]
(iii) v smaller, m bigger \checkmark (this factor occurs) twice in v^2 and once in m so $\frac{1}{2}mv^2$ smaller \checkmark	[2]
Total	[7]
13(a) Reference to proton-electron (beta) charge balance√	[1]
(b) Not ionising (and detectors observe ionisation)√	[1]
(c)(i) Up to three of the following points: $[3\sqrt{1}]$ Or other :	r.1
 Principle of Conservation of Energy was established by respected physicists Using Conservation of Energy had previously always given good predictions/ explanations of phenomena owtte (Can give specific example) Calculations using Conservation of Energy had always been successful (Can give specific example) Removing a fundamental foundation of theoretical physics is extremely unsettling It is difficult to abandon something that you have grown up with and become used to Up to three of the following points: [3√] Or other : Difficult to imagine any particle smaller than the (tiny) electron 	
 Neutron/proton/electron model of the atom had been successful without it You shouldn't just invent imaginary particles to fudge a solution to a problem It takes a long time to adjust to new ideas Mark both parts together with a maximum of five marks 	[6]
Total	[8]

Section C			
Question Number	Answer	Max Mark	
14(a)	annihilation produces 2 photons in opposite directions ✓		
	Could refer to coincidence counting	[1]	
(b)(i)	'Noise' count is recorded over a time which is about 10 × smaller than signal graph. \checkmark	[1]	
(ii)	Values on signal graph significantly greater than / >> 10 × largest value on 'noise' ✓		
	'Noise' graph does not show any (significant) peak ✓		
	Time delay (2 μ s) corresponds to prediction \checkmark	[3]	
(c)(i)	(Both) reactors were built to produce nuclear weapons√		
	Further development, e.g. too expensive to construct separate		
	experiment, could use equipment already there, could discuss with fellow scientists working there.	[2]	
(ii)	Any two distinct points, or any one point developed		
(11)	The pure scientists may be opposed to military research for		
	personal pacifist reasons√		
	 The public may be opposed to military research ✓ as above ✓ or 		
	may be opposed to pure science ✓ as waste of public money ✓		
	 Military research needs to be secret so pure science could compromise national security 		
	 Pure science experiments / reporting could be limited ✓ by security restrictions in military establishments ✓ 		
	Other distinct valid suggestions or explanations should be credited	[2]	
		[4] [0]	
	Total	[9]	
15(2)	$T = \ln 2/2 3 \times 10^{-7} c^{-1} = 3.0 \times 10^{6} c (= 34.0 dowc)$		
15(a)	$\gamma_{2} = 112/2.3 \times 10^{6} \text{ s} = -3.0 \times 10^{6} \text{ s} (-34.9 \text{ days})$		
	~ 2.0 ~ 10 3 V	[1]	
(b)	Very little Ar-37 present		
(5)	Extremely low count rate		
	Hard to distinguish from background ✓		
	Possible noise present (from radioactive minerals) 🗸		
	vast volume of C₂Cl₄ dilutes/spreads out owtte Ar-37✓		
	QWC: appropriate form and style	[1]	
	Any three valid distinct points.	[3]	
	Total	[5]	

Section C			
Question Number	Answer	Max Mark	
16(a)	Distance = $3.0 \times 10^8 \times 3.2 \times 10^7 \times 40\ 000\ m$ = $3.8 \times 10^{20}\ m\ \checkmark\ m\ \checkmark\ e$ Evidence of calculation required for second \checkmark	[2]	
(b)	Neutrinos and photons travel at similar speed in vacuo ✓ Neutrinos not slowed by travel through Sun ✓ Photons slowed by about 40 00 years (from part a) ✓		
(c)	Any two points Any of the following points: <i>Paradigm related:</i> Scientists reluctant to abandon theoretical model ✓ Theoretical model previously successful ✓ No alternative solar model available ✓ <i>Data related</i> Experiments have very low count rates ✓ (Low count) implies low signal:noise ratio (Q15) ✓ (Low signal:noise ratio) suggests large uncertainty ✓ <i>Consequence related:</i> If current core activity is low, future output will be low ✓ One-third output is huge reduction ✓ Life on Earth will cease to exist with such low solar power ✓ Any five points	[2]	
	Other distinct valid suggestions or explanations should be credited similarly	[5]	
	Total	[9]	
	Section C Total	[38]	
	Paper Total	[100]	