Write your name here		
Surname		Other names
Edexcel International GCSE	Centre Number	Candidate Number
Chemistry Unit: 4CH0 Science (Double Av Paper: 1C		
Friday 13 January 2012 – Time: 2 hours	Morning	Paper Reference 4CH0/1C 4SC0/1C
You must have: Ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.

Information

- The total mark for this paper is 120.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

		N					Group						ო	4	ũ	Q	~	0	
Period 1	_						Hydrogen											Helium 20 m	
N	7 Lithium 3	9 Beryllium 4										L	5 Boron 5	12 Carbon 6	14 Nitrogen 7	16 Oxygen 8	19 Fluorine 9	20 Neon 10	r
ი	23 Na Sodium	24 Mg 12											27 Aluminium 13	28 Silicon	31 Phosphorus 15	32 Sulfur 16	35.5 Cl Chlorine	40 Argon 18	
4	39 Potassium 19	20 40 Calcium 20	45 Scandium 21	48 Titanium 22	51 Vanadium 23	52 Chromium 24	55 Mn Manganese 25	8 9 5 8	59 Cobalt 27	59 Nickel 28	63.5 Copper 29	65 Zinc 30	70 Gallium 31	73 Germanium 32	75 AS Arsenic 33	79 Selenium 34	80 Bromine 35	84 Krypton 36	
Ŋ	86 Rubidium 37	88 Strontium 38	89 Yttrium 39	91 Zrconium 40	93 Niobiu 41	96 MO Molybdenum 42	99 TC Technetium 43	101 Ruthenium 44	103 Rhodium 45	106 Pd Palladium 46	Ag Silver 47	112 Cadmium 48	115 Indium 49	50 TIN 130	122 Sb Antimony 51	128 Te Tellurium 52	127 fodine 53	131 Xenon 54	r
9	133 CS Caesium 55		139 La Lanthanum 57	179 Hatnium 72	181 Tantal 73	184 186 190 1 W Re OS 1 Um Tungsten Rhenium Osmium Irid 74 75 76 7	186 Rhenium 75	190 Osmium 76	192 Iridium 77	195 Pt Platinum 78	197 Au Gold 79	201 Hg Mercury 80	204 TI B1	207 Pb Lead 82	209 Bismuth 83	210 Połonium 84	210 At Astatine 85	222 Radon 86	T
7	223 Fr Francium 87	226 Radium 88	227 Actinium 89																1
						_	Key												
							Relative atomic	mic											

Relative atomic mass Symbol Name Atomic number

P 4 0 1 2 6 A 0 2 2 8

THE PERIODIC TABLE

3

Answer ALL questions.

1 Salt is soluble in water, but sand is insoluble in water. This difference allows a mixture of salt and sand to be separated using this apparatus.

Step 3

(a) Use words from the box to complete the sentences. Each word may be used once, more than once or not at all.

(6)

	beaker funnel	Bunsen burner glass rod	burette thermometer	conical flask water
In	Step 1, the mixture	e of salt and sand is plac	ed in a	
cor	ntaining	and stirre	ed with a	
In Step 2, the mixture from Step 1 is poured through a				
inte) a			
In	Step 3, the liquid i	s transferred to a basin t	to allow the	
to l	be removed.			

(b) (i)	What should be placed in A before the mixture from Step 1 is poured throu	gh it? (1)
(ii)	What is the solid removed in Step 2 ?	(1)
(c) Plac	the crosses (\boxtimes) in two boxes to show the names of two processes used in this	separation. (2)
\times	chromatography	(2)
\times	condensation	
\times	distillation	
\mathbf{X}	evaporation	
\mathbf{X}	filtration	
\mathbf{X}	sublimation	
	(Total for Question 1 = 10	marks)

5

2	Iron is	a useful metal. One problem with using iron is that it can rust.	
	(a) (i)	Name the iron compound present in rust.	(1)
	(ii)	Name the two substances that iron reacts with when it rusts.	
			(2)
1			
2			
	(b) Wh	at type of reaction occurs in the rusting of iron?	
	Plac	the a cross (\boxtimes) in one box.	(1)
	\times	combustion	(1)
	\times	decomposition	
	\times	displacement	
	\times	oxidation	
		vanising can prevent iron from rusting. In this process, the iron is coated with ther metal.	
	(i)	Identify the other metal.	(1)
			(1)
	(ii)	Identify one object suitable for galvanising.	
		Place a cross (\boxtimes) in one box.	(1)
	\times	bicycle chain	(1)
	\times	bucket	
	\times	car engine	
	\times	drink can	

		7 Turn over
	(Total for Question 2 = 8 m	arks)
2		
1	(d) State two other methods used to prevent iron from rusting.	(2)
	(d) State two other methods used to measure incomfrom mating	

3 Ammonium chloride contains oppositely charged ions.	
(a) State the formula of each ion.	(2)
Positive ion	
Negative ion	
(b) (i) Describe a chemical test to show that a substance contains ammonium ion	s. (3)
(ii) Describe a chemical test to show that a substance contains chloride ions.	(3)
(c) Ammonium chloride decomposes when heated:	
$NH_4Cl(s) \implies NH_3(g) + HCl(g)$	
What does the \rightleftharpoons symbol indicate about the reaction?	(1)
8	

(d) The reaction between ammonia an with the following apparatus.	nd hydrogen chloride can be used to illustrate diffusion
cotton wool soaked in concentrated hydrochloric acid	cotton wool soaked in concentrated white solid ammonia solution
After a few minutes, a white solid	appears inside the tube.
(i) Identify the white solid.	(1)
(ii) What does the diagram show to the speed of the hydrogen of	about the speed of the ammonia molecules compared chloride molecules? (1)
(e) State the main hazard when using Suggest one precaution you could	concentrated hydrochloric acid in the experiment in (d). use to minimise this hazard. (2)
azard	
recaution	
	(Total for Question 3 = 13 marks)
	9 1 1 2 6 A 0 9 2 8 Turn ove

 (c) The water drips onto anhydrous copper(II) sulfate and causes a reaction. The product of this reaction has the formula CuSO₄.5H₂O (i) State the final colour of the copper(II) sulfate in this reaction. 	(1)
(ii) The colour change of the anhydrous copper(II) sulfate shows that the liq	uid contains water.
Describe a test to show that the water is pure.	(2)
(Total for Question 4 =	= 8 marks)
	,

P 4 0 1 2 6 A 0 1 1 2 8

(c) Draw the displayed formula of an alkene containing four carbon atoms.	(1)
(d) Three of the compounds belong to the alkane homologous series. All the alkanes in this homologous series have the same general formula.	
(i) What is the general formula of the alkanes?	(1)
(ii) State two other features of a homologous series.	(2)
(e) The displayed formulae below represent isomers.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Explain what isomers are.	(2)
(Total for Question 5 = 1	1 marks) 13

Turn over 🕨

6 The diagram shows how the electrons are arranged in an atom of oxygen.

Oxygen atoms form both covalent and ionic bonds.

- (a) Water is formed when two atoms of hydrogen combine with one atom of oxygen.
 - (i) Draw a dot and cross diagram of a molecule of water. You need only show the electrons in the outer shells.

(ii) Explain how the covalent bonds in the water molecule hold the hydrogen and oxygen atoms together.

(2)

(2)

	Describe, in terms of electrons, what happens when sodium oxide is formed	
		(3)
(ii)	The reaction of sodium to form sodium oxide can be described as oxidation	because
	it involves the addition of oxygen.	
	State one other reason why this reaction can be described as oxidation.	(1)
(c) Exp	lain why water has a much lower melting point than sodium oxide.	
		(2)
(d) A te	eacher added sodium oxide to water in a beaker.	
	equation shows the reaction that occurred.	
	$Na_2O(\dots) + H_2O(\dots) \rightarrow 2NaOH(\dots)$	
	$Na_2O() + H_2O() \rightarrow 2NaOH()$ Insert the appropriate state symbols in this equation.	(2)
(i)		
(i)	Insert the appropriate state symbols in this equation. Some universal indicator was then added to the beaker. A colour change oc State the final colour of the universal indicator and identify the ion responsi	curred.
(i)	Insert the appropriate state symbols in this equation. Some universal indicator was then added to the beaker. A colour change oc	curred.
(i) (ii)	Insert the appropriate state symbols in this equation. Some universal indicator was then added to the beaker. A colour change oc State the final colour of the universal indicator and identify the ion responsi	curred. ble for
(i) (ii) hal colou	Insert the appropriate state symbols in this equation. Some universal indicator was then added to the beaker. A colour change oc State the final colour of the universal indicator and identify the ion responsi the colour change.	curred. ble for

7 Bromine, chlorine and iodine are elements in Group 7 of the Periodic Table.(a) (i) Identify which of these elements has	(2)
the palest colour	
the highest melting point	
(ii) Give the name of another Group 7 element that is a solid at room tempera	ature. (1)
(b) When chlorine and hydrogen react together, hydrogen chloride gas forms.	
Write a chemical equation for this reaction.	(2)
(c) Some hydrogen chloride gas is bubbled into separate samples of water and me A piece of blue litmus paper is dipped into each solution.	ethylbenzene.
(i) State, with a reason, the final colour of the litmus paper in the solution in	(2) water.
(ii) State, with a reason, the final colour of the litmus paper in the solution in	methylbenzene. (2)
(Total for Question 7 =	= 9 marks)

(ii) The diagrams show the thermometer readings at the start and at the end of one of the experiments. start end 20 25 15 20 Record the temperatures and calculate the temperature rise in this experiment. (3) Temperature at start _____°C C Temperature at end C Temperature rise

(iii) Each experiment was repeated twice. The table shows the average temperatures obtained. Metal and metal salt used Average temperature rise in °C 12.2 $Zn + CuSO_4$ + CuSO₄ Х 8.3 Х $+ ZnSO_4$ 0.0 $Cu + ZnSO_4$ 0.0 $Zn + XSO_4$ 2.7 $Cu + XSO_4$ 0.0 Use these results to identify the more reactive metal in each of the following pairs. (2) Zn and X Cu and X (c) Write an equation for the reaction with a temperature rise of 2.7 °C. (1) (d) Suggest why the students did not use calcium metal in their experiments. (1) (Total for Question 8 = 10 marks)

9 AmmoFert Chemicals is a company that manufactures fertilisers.

The flow chart shows how the company manufactures a fertiliser called AmmoBoost.

(b) The equation for the production of ammonia is

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \qquad \Delta H = -92 \text{ kJ/mol}$

Calculate the maximum mass of ammonia that can be obtained from 56 tonnes of nitrogen. (1 tonne = $1\,000\,000$ grams)

(3)

(c) EnAitchThree is another company that manufactures ammonia using the same reaction as AmmoFert but using different conditions. EnAitchThree uses a higher temperature and a higher pressure than AmmoFert.

(i) Predict the effect on the rate of reaction and on the equilibrium position by changing to the temperature used by EnAitchThree.

Effect of higher temperature on rate of reaction

Effect of higher temperature on equilibrium position

(ii) Predict the effect on the equilibrium position by changing to the pressure used by EnAitchThree. Justify your prediction.

(2)

(2)

(d) The main compound in AmmoBoost contains	35% nitrogen and 5% hydrogen by mass.
The remainder is oxygen.	
(i) Calculate the percentage by mass of oxy	gen in the compound. (1)
(ii) Determine the empirical formula of the c	compound. (3)
(iii) What is the name of the main compound	l in AmmoBoost? (1)
	(Total for Question 9 = 18 marks)
22	

10 Like other metals, iron is malleable and is a good conductor of electricity.	
(a) (i) Explain why iron is malleable.	(2)
	(2)
(ii) Explain why iron is a good conductor of electricity.	(2)
(b) Iron forms two sulfates. One has the formula $FeSO_4$ and the other has the formula $Fe_2(SO_4)_3$	
The addition of sodium hydroxide solution can be used to distinguish bet of these sulfates.	ween solutions
(i) State what would be observed in each case.	
	(2)
FeSO ₄	
Fe ₂ (SO ₄) ₃	
(ii) Write a chemical equation for the reaction of iron(II) sulfate (FeSO ₄)) with
sodium hydroxide solution.	(2)
(Total for Question	10 = 8 marks)

11 Some students investigated the rate of reaction between sodium thiosulfate solution and hydrochloric acid. The equation for the reaction is

 $Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(1) + S(s) + SO_2(g)$

The precipitate of sulfur makes the reaction mixture go cloudy.

The students used this method.

- Place a mixture of sodium thiosulfate solution and water in a conical flask
- Add some dilute hydrochloric acid, swirl the mixture and start a timer
- Place the flask over a black cross marked on a piece of paper
- Record the time taken for the cross to disappear when viewed from above

The students used 10 cm³ of dilute hydrochloric acid in each experiment.

They carried out all the experiments at the same temperature.

They used different volumes of sodium thiosulfate solution and water in each experiment. They were told to keep the total volume of sodium thiosulfate solution and water constant.

The table shows their results.

Student	Volume of sodium thiosulfate solution in cm ³	Volume of water in cm ³	Time in s
1	50	0	26.6
2	40	10	55.9
3	35	15	76.4
4	30	20	105.6
5	25	25	149.0
6	20	30	223.5
7	15	40	321.4

(a) Explain why the results of student 7 should not be used.

(1)

(b) Plot the results of the six other students on the grid below. Draw a curve of best fit through the points.

(3)

(c) The students used this equation to calculate the rate of each reaction in their investigation.

rate of reaction = $\frac{1000}{\text{time taken}}$

Calculate the rate of reaction for student 1's experiment.

Give your answer to **one** decimal place.

(2)

Rate =

(d) Another group of students used the same method but with different solutions of sodium thiosulfate and hydrochloric acid. They calculated the rate of reaction for each experiment they did. Their results are shown on the following graph.

0 1 2 6 A 0 2 6

27

BLANK PAGE

BLANK PAGE