

GCE

Physics B

Unit H557A/03: Practical skills in physics

Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations available in RM Assessor

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3

TE	Transcription error
NBOD	Benefit of doubt not given
POT	Power of 10 error
	Omission mark
SF	Error in number of significant figures
V	Correct response
?	Wrong physics or equation

Significant figures:

Usually calculated values are expected to be given to a minimum of 2 sf unless stated otherwise in additional guidance. Candidate's answers which are given to more than 2 sf should round to the value quoted in the markscheme.

Special cases:

3(b)(i) mean change should be to exactly 2 sf to match rest of data in column.

4(a)(iii) and (iv) mean and 2x spread are given to 3 sf in the markscheme otherwise the subsequent calculations become meaningless.

4(b)(i) both values should have the same number of sf (but can be any number of sf).

All marking points are independent unless stated otherwise.

Mark Scheme SECTION A

Q	Question		Answer	Marks	Guidance
1	(a)		Immerse in liquid (eg oil/water) with thermometer and means of changing the temperature.	1	Change the temperature by heating water or adding hot water/ice or allowing to cool in room.
			Extra detail: e.g. electrically insulate thermistor from water / allow time for thermal equilibrium to be reached at each temp or method of getting below room temperature or stir.	1	
	(b)		V _{out} rises as temp increases	1	
	(c)	(i)	Appropriate uncertainty bars added to Fig. 1.3	1	Horizontal bars should be 4 small squares long, vertical bars should be 2 small squares high. Award mark for at majority correctly drawn uncertainty bars.
			Straight line of best fit drawn within their bars. As straight line can be drawn (results are consistent with V_{out} varying linearly with temperature)	1	If no error bars drawn, allow line of best fit with even distribution of points either side.
		(ii)	Temperature values written on scale to replace voltage values.	1	Ignore reference to measuring V at different T. Accept change the scale to read temperatures.
			 Extra detail such as: Linear relationship makes each scale division the same size Sensitivity is constant across the whole range A meaningful comment about the conversion of V to °C. 	1	 Examples include: Subtracting intercept (1.7) from V Dividing V by gradient (0.05 to 0.07 V °C⁻¹) Multiplying by 1/gradient (14 to 20)

(d)Level 3 (5-6 marks) Detailed and clearly explained calculations to show that sensitivity and range decreases with both increasing and decreasing values of R _Q .There is a well-developed line of reasoning which is clear a logically structured. The information presented is clear rele and substantiated.Level 2 (3-4 marks) Some calculations to compare range or V _{out} of existing set with increasing R _Q and decreasing R _Q .There is a line of reasoning presented with some structure. information presented is in the most part relevant and supp by some evidence.Level 1 (1-2 marks)	 Indicative scientific points may include: Qualitative comments: R_{Th} decreases with increasing temperature. V_{out} varies depending on the ratio of resistance values. Sensitivity will decrease with increasing R_Q and decreasing R_Q. Optimum sensitivity will be when R_Q is about the mid-point of range of R_{Th}. Calculations from data shown in graphs: R_{Th} at low temp (< 5°C) is in range 12 – 16 kΩ. R_{Th} at high temp (> 30°C) is in range 3 – 4 kΩ. Range of V_{out} = 3.6 – 1.7 V = 1.9 V over 35°C range. Sensitivity is approx 0.05 to 0.06 V °C⁻¹. Calculate R_Q to be in range 7.5 to 8.6 kΩ.
Limited use of graphical information and simple calculations linked to comment on sensitivity/performance/output range. The information is basic and communicated in an unstructu- way. The information is supported by limited evidence and relationship to the evidence may not be clear.	 S V_{out} will increase as R_Q has larger proportion of total R. Use of potential divider equation to calculate V_{out} with value of R_Q > 9 kΩ at low temp (< 5°C) and high temp(> 30°C). Show that range of V_{out} is lower than 1.9 V over 35°C range. Calculation to show that sensitivity is less than 0.05 to 0.06 V °C⁻¹ or their value calculated for existing set up.
0 marks No response or no response worthy of credit.	 Decreasing R_Q: V_{out} will decrease as R_Q has smaller proportion of total R. Use of potential divider equation to calculate V_{out} with value of R_Q < 7 kΩ at low temp (< 5°C) and high temp(> 30°C). Show that range of V_{out} is lower than 1.9 V over 35°C range. Calculation to show that sensitivity is less than 0.05 to 0.06 V °C⁻¹ or value calculated for existing set up.

Question		on	Answer	Marks	Guidance
2	(a)	(i)	F is proportional to mass.	1	Could be shown as F=mg or calculations. NOT F=ma
			A set (at least 5) of suitable calculations eg: m/x or F/x for each row of table; or Δx for each pair of rows (which have equal $\Delta m = 100g$); Find one value for m/x (or F/x) and then use it to predict values for m for each value of x (or vice versa).	1	m/x will give 40.0, 39.2, 40.0, 40.4, 40.0, 40.0 Δx will give 2.6, 2.4, 2.4, 2.6, 2.5 F/x will give 0.392, 0.384, 0.392, 0.396, 0.392, 0.392 Ignore POT as long as they are consistent. Calculated values should be to at least 2sf.
			$\Delta m/\Delta x$ is constant approximately/within experimental error/uncertainty	1	If no (or insufficient) calculations then this mark can be awarded for describing a valid test to carry out.
		(ii)	$k = F/x = 0.6x9.8 / 0.15 = 39 N m^{-1}$	1	Accept use of data from any row of the table. 38 N m ⁻¹ if second row is used.
	(b)	(i)	Two points marked V where curve crosses $d = 8$ cm within half a small square.	1	Any \mathbf{V} in an incorrect position scores zero
		(ii)	f (= 5.75/4) = 1.4(4) Hz	1	
			Use of $f = n/t$ with $n \ge 2$.	1	
		(iii)	Use of f = 1/T and T = $2\pi\sqrt{(m/k)}$ (to give m = k / $(4\pi^2 f^2)$)	1	Credit use of m = $kT^2/4\pi^2$ and T = 0.7 s.
			$-20/(4-2) + 40^{2} + 40^{2} + 10^{1} + 10^{1}$		Look for evidence of substitution/evaluation.
			$m = 39/(4 \pi^{-} \times 1.43^{-}) = 4.8 \times 10^{-1} \text{ Kg}$	1	Answers should be in range 4.7 to 4.9 x 10 Kg
					= 13 cm
					Accept reverse argument.

H557A/03	Mark Scher	me	June 2017
	Level 3 (5-6 marks) ✓✓ Clear procedure/measurements and analysis. There is a well-developed line of reasoning which is clear and logically structured. The information presented is clear relevant and substantiated. Level 2 (3-4 marks) ✓✓ Some procedure/measurements and analysis There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) ✓✓ Limited procedure/measurements and/or limited analysis There is a line of reasoning presented with some structure. The information presented in the most part relevant and supported by some evidence. Level 1 (1-2 marks) ✓✓ Limited procedure/measurements and/or limited analysis There is a line of reasoning presented with some structure. The information presented in the most part relevant and supported by some evidence. O marks No response or no response worthy of credit.	6	 Indicative scientific points may include: To gain 2 or more marks, both procedure and analysis statements are needed. Procedure Level 3 Frequency/period of oscillation measured using an oscilloscope attached to signal generator or use data from motion sensor or multimeter. adjust the frequency in small increments close to the resonant frequency. Level 2 means of measuring amplitude (use ultrasound motion sensor or ruler adjacent to spring) repeat and determine an average amplitude at a given frequency range of frequency either side of resonant frequency Level 1 vary the frequency using signal generator measure the amplitude of oscillations plot a graph of amplitude against frequency y-intercept labelled as driving amplitude or lower frequencies amplitude = amplitude of driver higher frequencies the system does not have sufficient freedom to react to driver so amplitude tends to zero. Level 2 sketch of frequency vs amplitude graph showing peak (or statement) sketch of frequency vs amplitude occurs when the natural frequency (or stated in words) peak labelled or maximum amplitude occurs when the natural frequency is equal to the driving frequency.
	Total	15	
	Iotai	10	

	Ques	tion	Answer	Marks	Guidance
3	(a)	(i)	Minimum of three equally spaced horizontal lines between poles.	1	Lines should be perpendicular to magnet surface and start and touch (or finish close to) surface.
			Arrows on lines N to S	1	Accept curved lines to show edge effects.
					Ignore field lines outside of the magnet assembly.
		(ii)	Interaction between magnetic field of wire and permanent magnetic field gives rise to a (vertical) force on the wire;	1	Deference to Neuton's third law
			balance reading changes)	I	Reference to Newton's third law.
	(b)	(i)	Mean change of both balance readings to 2sf	1	0.37; 0.47 2sf only – stand alone sf penalty
			Both values of F	1	3.6 or 3.7; 4.6
					Allow ecf from incorrectly rounded figures for mean
		(::)		4	change in balance reading. (3.7 and 4.5)
		(11)	Largest difference between mean value and max (or min) is	I	Identification of max variation in data.
			OR largest half range = 0.02g		Allow echiron incorrect value in bottom row of table.
			Either: $\Delta F = \Delta m q = \pm 0.3 \times 10^{-3} \text{ N or } \pm 0.2 \times 10^{-3} \text{ N}$	1	Assuming g has zero uncertainty.
			depending on previous answer.	-	Accept multiplying raw data in bottom row by g before
			Or: relative uncertainty in balance reading = $\Delta m/m$ for whichever of the bottom two rows used, to give absolute		finding difference in F values.
			uncertainty in force = $\pm 0.3 \times 10^{-3}$ N or $\pm 0.2 \times 10^{-3}$ N		0.02/0.47 = 4.3%, 0.02/0.37 = 5.4%, 0.03/0.47 = 6.4%
					Allow ecf from wrong rounding.
		(iii)	Both points correctly plotted (to within ½ small square)	1	(2.5, 3.6) and (3.0, 0.46) or ecf from table.
			LOBF drawn	1	Line must extend across the range of points shown.
					no more than 2 small squares vehically from any plotted
		(iv)	Gradient calculated from points on line	1	Ignore POT
1		. /			Acceptable range of gradient:1.4 mNA ⁻¹ < m < 1.7 mNA ⁻¹
			B = gradient/L or B = gradient/0.05 or 5)	1	ecf from their LoBF
1					Correct POT in final answer.
			B = 30 mT	1	Accept values within range: 28 mT < B < 34 mT
			Total	13	

SECTION B

Question		ion	Answer	Marks	Guidance
4	а	i	v has largest uncertainty because it is difficult to judge where the image is (perfectly) in focus.	1	Ignore answers relating to % uncertainty. Not just more difficult to measure image distance.
		ii	Range = 0.03(0) m	1	
		iii	mean = 0.401 m	1	Average calculated excluding the two suspected outliers.
			Marked correctly on plot by eye – [in the first quarter of the square to the right of the 0.400 grid line]	1	Allow ecf from incorrect mean. y-position not important.
		iv	Minus x2 spread from mean = 0.371 so 0.330 is an outlier OR mean - 0.330 = 0.071 which is greater than 2 x spread so is an outlier.	1	Allow ecf from mean calculated in (iii) and range calculated in (ii) for both with correct argument. NOT ±0.015
			Plus x2 spread from the mean = 0.431 so 0.430 is not an outlier OR 0.430 - mean = 0.029 which is less than 2 x spread so not an outlier.	1	
	b	i	m = v/u Both values correct -2.13 and -3.30 Correct sign and consistent number of SF	1 1	
		ii	Points plotted correctly ± 1/2 square	1	ECF from (b)i but v should be at 0.48 and 0.66

H557A/03		Mark Scheme		June 2017	
	iii	Multiply $\frac{1}{v} = \frac{1}{v} + \frac{1}{t}$ by v to get $1 = \frac{v}{v} + \frac{v}{t}$	1		
		Substitute in $m = \frac{v}{u}$ to give $1 = m + \frac{v}{t}$ and rearrange (to	1		
		give $m = 1 - \frac{v}{f}$			
		OR			
		Rearrange $\frac{1}{v} = \frac{1}{u} + \frac{1}{f}$ to give $\frac{1}{u} = \frac{1}{v} - \frac{1}{f}$ [or $u = \frac{vf}{f-v}$]	[1]		
		Substitute into $m = \frac{v}{u} = v \left(\frac{1}{v} - \frac{1}{f}\right) = \frac{v}{v} - \frac{v}{f}$ or $m = \frac{v}{\frac{vf}{f-v}}$ (to	[1]		
		give $m = 1 - \frac{v}{f}$			
	iv	Gradient = $\frac{-1}{f}$	1	EOR	
		Calculation of gradient = -6.67 to give $f = 0.15$ m	1	Gradient should be between -6.5 and -6.8. 0.147 m < f < 0.154 m.	
				Ignore signs.	
				If correct value for f is given, without evidence of gradient use, then only second marking point awarded.	
С	i	4(.00) D	1	From either intercept.	
	ii	Steepest line drawn within error bars	1	Both drawn lines must cross printed line.	
		Shallowest line drawn <u>within</u> error bars	1		
		Maximum and minimum powers = intercepts taken from max and min gradient lines drawn	1	Accept intercepts from either x or y axes. Correct to \pm half a small square from lines drawn by candidate	
		Percentage uncertainty = $(\max \text{ value} - 4.0) \times 100 / 4.0$ OR Percentage uncertainty = $(4.0 - \min \text{ value}) \times 100 / 4.0$ OR Percentage uncertainty = $\frac{1}{2}$ (max value - min value)	1	Intercepts can be taken from either line ±0.05D Eg: Minimum = 3.8D Maximum = 4.2D Common values are usually between 5% to 13%	
		Total	18		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

