

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE AL Further Mathematics (9FM0) Paper 4C Further Mechanics 2

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P72114A*
Publications Code 9FM0_4C_2206_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places

complete.

- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u>

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Question	Scheme	Marks	AOs
1 (a)	Moments about y-axis	M1	3.4
	$((5+k))m\overline{x} = -3kma + 6ma + 3ma) \qquad \overline{x} = \frac{(9-3k)a}{5+k}$	A1	1.1b
	Moments about x-axis	M1	3.4
	$((5+k))m\overline{y} = 4kma + 4ma - 12ma) \qquad \overline{y} = \frac{(4k-8)a}{5+k}$	A1	1.1b
		(4)	
	$\Rightarrow 9 \left[(9-3k)^2 + (4k-8)^2 \right] = (5+k)^2$ $(224k^2 - 1072k + 1280 = 0)$	M1	3.1a
	\Rightarrow k = $\frac{5}{2}$, or k = $\frac{16}{7}$	A1	2.2a
		(2)	
(b)			
		(6	1 .)

(6 marks)

Note	es:
(a)	
M1	Moments equation to find \overline{x} – need all terms and dimensionally correct Allow with m cancelled throughout Allow if they have a common factor of g
A1	Correct expression for \bar{x} Any equivalent form. Allow recovery
M1	Moments equation to find \overline{y} – need all terms and dimensionally correct Allow with m cancelled throughout Allow if they have a common factor of g
A1	Correct expression for \overline{y} Any equivalent form. Allow recovery
(b)	
M1	Use their moments equations to form a quadratic equation in k only with no square root (need not simplify)
A1	Obtain both correct values. Accept 2.5 and 2.3 or better (2.2857)

Question	Scheme	Marks	AOs
2 (a)	Use of $P = Fv$	B1	3.3
	Equation of motion $(F - 3v^2 = 60a)$	M1	2.1
	$\frac{200}{v} - 3v^2 = 60v \frac{dv}{dx}$	A1	2.5
	$\frac{\mathrm{dv}}{\mathrm{dx}} = \frac{200 - 3\mathrm{v}^3}{60\mathrm{v}^2} *$	A1*	2.2a
		(4)	
2(b)	$\Rightarrow \int \frac{60v^2}{200 - 3v^3} dv = \int 1 dx \left(-\frac{60}{9} \ln \left(200 - 3v^3 \right) = x(+C) \right)$	M1	1.1b
	$D = \left[-\frac{60}{9} \ln \left(200 - 3v^3 \right) \right]_2^4 = -\frac{60}{9} \ln \left(\frac{200 - 3 \times 64}{200 - 3 \times 8} \right)$	M1	1.1b
	$=\frac{60}{9}\ln\frac{176}{8} = \frac{60}{9}\ln 22$	A1	1.1b
		(3)	
		(7)	
		(7 r	narks)
Notes:			
(a)			
B1	Seen or implied Not just quoted. Need at least 200 = Fv Could be on its own, in an equation or on a diagram		
M1	Form equation of motion. Need all terms and dimensionally correct. correct form for acceleration and sign errors Allow with m not substituted	Condone any	7
A1	Correct equation - any equivalent form with correct acceleration		
A1*	Obtain given answer from correct working Must be as written in the question but could swap LHS and RHS		
(b)			
M1	Separate variables and integrate to obtain $(x=)k\ln()$ (Constant of integration not required) Condone if the x is not explicitly stated but M0 if it is an incorrect fundamental statement of the condonal statement of the c	nction.	
M1	Use limits correctly in an expression containing $k \ln (200-3v^3)$ to find		

	Substitute and subtract in the correct order
	Obtain exact answer from correct working
A1	Any equivalent single term
	No working seen is Max M1M0A0

			Sche	me					Ma	arks	AOs
Moments abo	ut AC:								N	M 1	3.1a
rod	CD	DE	EF	FA	AB	BC	BF	D	F	CF	
Mass ratio	4	4	5	5	3	3	8	6	5	10	
From AC	2a	6a	6a	2a	0	0	2a	4	a	2a	
$8a \times 4a \pm 2 \times 3$	Sa∨Aa⊒	L 2 × 5a	∨2a ±1	∩a ∨ /\a ⊥	.2×4a	×2a –	$A8a\overline{v}$		A	A 1	1.1b
0a ^ 4 a + 2 ^ 3	a ∧ +a ¬		^ 2a + 1	∪a ∧ + a +	2^4a	. × 2a –	1 0ax		A	A 1	1.1b
$\left(132a = 48\overline{x}\right)$	$\Rightarrow \overline{\mathbf{x}} =$	$\frac{11}{4}$ a							A	A 1	1.1b
									((4)	
Moments abo	ut F:								N	M1	3.1a
Mg ($4a - \overline{x}$	= kMg	×4a						A	1ft	1.1b
									A	A 1	1.1b
10								((3)		
Moments about C:								N	M 1		
$4a(M + kM) = M \overline{x} + 8akM$							A	1ft			
:	\Rightarrow k = $\frac{1}{1}$	<u>5</u> .6							A	A 1	1.1b
									((3)	
										(7 n	narks
Dimensionally correct equation for moments about AC or a parallel axis. All terms needed and horizontal distances Must be using the mass ratio. Allow slips, but not consistently density and not											
				<u> </u>							
			rect								
-	_		workir	ng and ap	pears	at the e	nd				
Dimensionally correct moments equation. Accept any complete alternative method using M and kM to obtain an equation in k only. Condone if g and / or M cancelled throughout											
	mass ratio From AC 8a × 4a + 2×3 (132a = 48x Moments abo Mg (Moments abo 4a (M + kM) Moments abo 4a (M + kM) Consistently lender and hore	Mass ratio 4 From AC 2a $8a \times 4a + 2 \times 3a \times 4a + 4a = 4a \times 4a + 2a \times 4a \times$	rod CD DE Mass ratio 4 4 From AC 2a 6a $8a \times 4a + 2 \times 3a \times 4a + 2 \times 5a$ $(132a = 48\overline{x}) \Rightarrow \overline{x} = \frac{11}{4}a$ Moments about F: Mg $(4a - \overline{x}) = kMg$ $\Rightarrow k = \frac{5}{16}$ Moments about C: $4a(M + kM) = M \overline{x} + 8akM$ $\Rightarrow k = \frac{5}{16}$ Dimensionally correct equation consistently lengths. Condon One side of the equation corresponds of the equatio	Moments about AC: rod CD DE EF Mass ratio 4 4 5 From AC 2a 6a 6a $8a \times 4a + 2 \times 3a \times 4a + 2 \times 5a \times 2a + 10$ $(132a = 48\overline{x}) \Rightarrow \overline{x} = \frac{11}{4}a$ Moments about F: $Mg(4a - \overline{x}) = kMg \times 4a$ $\Rightarrow k = \frac{5}{16}$ Moments about C: $4a(M + kM) = M \overline{x} + 8akM$ $\Rightarrow k = \frac{5}{16}$ Dimensionally correct equation for meeded and horizontal distances Must be using the mass ratio. Allow consistently lengths. Condone without One side of the equation correct Both sides of the equation correct Or equivalent single term Condone if a is missing in the working Dimensionally correct moments equation in k or Condone if g and / or M cancelled the Condone if g and / or M cancelled the condone if g and / or M cancelle		Moments about AC: rod CD DE EF FA AB Mass ratio 4 4 5 5 3 From AC 2a 6a 6a 2a 0 $8a \times 4a + 2 \times 3a \times 4a + 2 \times 5a \times 2a + 10a \times 4a + 2 \times 4a$ $(132a = 48\overline{x}) \Rightarrow \overline{x} = \frac{11}{4}a$ Moments about F: Mg $(4a - \overline{x}) = kMg \times 4a$ $\Rightarrow k = \frac{5}{16}$ Moments about C: $4a(M + kM) = M \overline{x} + 8akM$ $\Rightarrow k = \frac{5}{16}$ Dimensionally correct equation for moments about an edded and horizontal distances Must be using the mass ratio. Allow slips, but not consistently lengths. Condone without a One side of the equation correct Both sides of the equation correct Or equivalent single term Condone if a is missing in the working and appears Dimensionally correct moments equation. Accept and Mand kM to obtain an equation in k only. Condone if g and / or M cancelled throughout	Moments about AC:	Moments about AC: rod CD DE EF FA AB BC BF Mass ratio 4 4 5 5 3 3 8 From AC 2a 6a 6a 2a 0 0 2a $8a \times 4a + 2 \times 3a \times 4a + 2 \times 5a \times 2a + 10a \times 4a + 2 \times 4a \times 2a = 48a\overline{x}$ (132a = $48\overline{x}$) $\Rightarrow \overline{x} = \frac{11}{4}a$ Moments about F: $Mg(4a - \overline{x}) = kMg \times 4a$ $\Rightarrow k = \frac{5}{16}$ Moments about C: $4a(M + kM) = M \overline{x} + 8akM$ $\Rightarrow k = \frac{5}{16}$ Dimensionally correct equation for moments about AC or a parallel needed and horizontal distances Must be using the mass ratio. Allow slips, but not consistently dens consistently lengths. Condone without a One side of the equation correct Both sides of the equation correct Or equivalent single term Condone if a is missing in the working and appears at the end Dimensionally correct moments equation. Accept any complete alte M and kM to obtain an equation in k only. Condone if g and / or M cancelled throughout	Moments about AC: rod CD DE EF FA AB BC BF D Mass ratio 4 4 5 5 5 3 3 3 8 6 From AC 2a 6a 6a 2a 0 0 2a 4 $8a \times 4a + 2 \times 3a \times 4a + 2 \times 5a \times 2a + 10a \times 4a + 2 \times 4a \times 2a = 48a\overline{x}$ (132a = $48\overline{x}$) $\Rightarrow \overline{x} = \frac{11}{4}a$ Moments about F: $Mg (4a - \overline{x}) = kMg \times 4a$ $\Rightarrow k = \frac{5}{16}$ Moments about C: $4a (M + kM) = M \overline{x} + 8akM$ $\Rightarrow k = \frac{5}{16}$ Dimensionally correct equation for moments about AC or a parallel axis. needed and horizontal distances Must be using the mass ratio. Allow slips, but not consistently density are consistently lengths. Condone without a One side of the equation correct Both sides of the equation correct Or equivalent single term Condone if a is missing in the working and appears at the end Dimensionally correct moments equation. Accept any complete alternation and kM to obtain an equation in k only. Condone if g and / or M cancelled throughout	Moments about AC: rod CD DE EF FA AB BC BF DF Mass ratio 4 4 4 5 5 5 3 3 8 6 From AC 2a 6a 6a 2a 0 0 2a 4a 8a × 4a + 2 × 3a × 4a + 2 × 5a × 2a + 10a × 4a + 2 × 4a × 2a = 48a \overline{x} (132a = 48 \overline{x}) $\Rightarrow \overline{x} = \frac{11}{4}$ a Moments about F: Mg (4a $-\overline{x}$) = kMg × 4a $\Rightarrow k = \frac{5}{16}$ Moments about C: 4a (M + kM) = M \overline{x} + 8akM $\Rightarrow k = \frac{5}{16}$ Dimensionally correct equation for moments about AC or a parallel axis. All needed and horizontal distances Must be using the mass ratio. Allow slips, but not consistently density and nonsistently lengths. Condone without a One side of the equation correct Both sides of the equation correct Or equivalent single term Condone if a is missing in the working and appears at the end Dimensionally correct moments equation. Accept any complete alternative manak M to obtain an equation in k only. Condone if g and / or M cancelled throughout	$ \begin{array}{ c c c c c } \hline \text{Moments about AC:} & \text{M1} \\ \hline \hline \text{rod} & \text{CD} & \text{DE} & \text{EF} & \text{FA} & \text{AB} & \text{BC} & \text{BF} & \text{DF} & \text{CF} \\ \hline \text{Mass ratio} & 4 & 4 & 5 & 5 & 3 & 3 & 8 & 6 & 10 \\ \hline \text{From AC} & 2a & 6a & 6a & 2a & 0 & 0 & 2a & 4a & 2a \\ \hline 8a \times 4a + 2 \times 3a \times 4a + 2 \times 5a \times 2a + 10a \times 4a + 2 \times 4a \times 2a = 48a\overline{x} & \text{A1} \\ \hline \text{(132a = 48$\overline{x})} \Rightarrow \overline{x} = \frac{11}{4}a & \text{A1} \\ \hline \text{Moments about F:} & \text{M1} \\ \hline \text{Mg} \left(4a - \overline{x}\right) = k\text{Mg} \times 4a & \text{A1ft} \\ \hline \Rightarrow k = \frac{5}{16} & \text{A1} \\ \hline \text{Moments about C:} & \text{M1} \\ \hline \text{A4} \left(M + kM\right) = M \overline{x} + 8akM & \text{A1ft} \\ \hline \Rightarrow k = \frac{5}{16} & \text{A1} \\ \hline \end{array} \right. $

A1	Correct unsimplified equation (accept without g and/or M) Correct mass and distance combination for their \overline{x}
A1	Or 0.3125 Condone 0.31 or 0.313

Question	Scheme	Marks	AOs
4(a)	B θ 10a-r A r T R mg		
	Resolve vertically	M1	3.4
	$T\cos\theta = mg$	A1	1.1b
	$T = \left(\frac{mg}{\cos\theta} = \frac{6.8mg}{6}\right) = \frac{17mg}{15}$	A1	1.1b
		(3)	
4 (b)	Equation of motion	M1	3.1b
	$\operatorname{mr} \omega^2 = T + T \sin \theta \left(\operatorname{m} \times 3.2a \omega^2 = \operatorname{their} T \left(1 + \frac{8}{17} \right) \right)$	A1 A1	1.1b 1.1b
	Solves for ω or ω^2	M1	1.1b
	$\left(\frac{r\omega^2}{g} = \frac{1 + \sin\theta}{\cos\theta} = \frac{6.8 + 3.2}{6}, \omega^2 = \frac{10g}{6 \times 3.2a}\right) \qquad \omega = \sqrt{\frac{25g}{48a}} = \frac{5}{4}\sqrt{\frac{g}{3a}}$	A1	1.1b
		(5)	

(8 marks)

Notes:	
(a)M1	Need all terms. Condone sin/cos confusion
A1	Correct unsimplified equation.
A1	Correct answer only 1.1mg or better (1.13mg) Do not ignore subsequent working if they try to combine this with a tension in AR
(b)M1	Equation for circular motion. Need all terms and dimensionally correct. Condone sin/cos confusion and sign errors. Any correct form for acceleration
A1 A1	Unsimplified equation with at most one error Correct unsimplified equation

	Allow M1A1A0 for $mr\omega^2 = T' + (their (a)) sin \theta$
M1	Clear attempt to substitute for trig and tension or divide their two equations to solve for ω or ω^2 in terms of a and g Independent M mark but requires an equation using tension and trig.
A1	Any equivalent form $0.72\sqrt{\frac{g}{a}}$ or better (0.7216)

Question			Scheme		Marks	AOs
5(a)	Using sector: distance OG = $\frac{2 \times 3a \sin \frac{\pi}{4}}{3 \times \frac{\pi}{4}}$					1.1b
	Using Pythago Or using trigor		Ti .	$= OG^{2}$ $= OG\cos 45^{\circ} = OG\sin 45^{\circ}$	M1	2.1
		d =	$=\sqrt{\frac{16a^2}{\pi^2}}=\frac{4a}{\pi}$	*	A1*	2.2a
					(3)	
5(a) alt	Using semiciro		$3a: \overline{y} = \frac{4 \times 3a}{3\pi}$	$\left(=\frac{4a}{\pi}\right)$	B1	1.1b
	Moments about diameter: $\frac{9\pi a^2}{2} \times \frac{4a}{\pi} = 2 \times \frac{9\pi a^2}{4} \times d$				M1	2.1
	$\Rightarrow d = \frac{4a}{\pi} *$			A1*	2.2a	
					(3)	
(b)	Mass ratio From FC	9 - 3a - 3a	ODEF 9 3a 2	$ \begin{array}{c} ODC \\ \underline{9\pi} \\ 4 \end{array} $	B1	1.2
	Moments abou	t FC:	2	π	M1	3.1a
	$-9 \times \frac{3a}{2} + 9 \times \frac{3a}{2} + \frac{9\pi}{4} \times \frac{4a}{\pi} = \left(18 + \frac{9\pi}{4}\right) \overline{x} \left(=9a\right)$				A1	1.1b
	$\overline{x} = \frac{4a}{8+\pi}$				A1	1.1b
					(4)	

(b) alt		ABCO	ODEF	ODC			
(D) an	Mass ratio	9	9	$\frac{9\pi}{4}$	-		1.2
	From BOE	0	0	$\frac{4\sqrt{2}a}{\pi}$		B1	
	Moments abou	ıt BOE:				M1	3.1a
	$\left(18 + \frac{9\pi}{4}\right)d =$					A1	1.1b
	$\overline{x} = d \cos 45^{\circ} =$	$=\frac{4a}{8+\pi}$				A1	1.1b
						(4)	
(c)	$\overline{y} = \frac{4a}{8+\pi}$ fro	m OD or \overline{y} =	$= 3a + \frac{4a}{8+\pi}$ from	om FE		B1ft	1.1b
	Complete met	hod to find a	relevant angle	;		M1	3.1a
	$\theta^{\circ} = \tan^{-1} \left(\frac{1}{3a} \right)$	$\left(\frac{\overline{x}}{+\overline{y}}\right) = \tan^{-1}$	$\left(\frac{4a}{28a + 3\pi a}\right)$			A1ft	1.1b
		θ	$\theta = 6.1$			A1	1.1b
						(4)	
						(11)	marks)
Notes:							
	Correct application Must substitute for			ormula bookle	t.		
(a)B1	Implied if you see $\left(=\frac{4\sqrt{2}a}{\pi}\right)$						
1	Correct strategy to find the distance for the quadrant						
M1	Need to see use o						

Correct masses and distance from FC or a parallel axis or BOE

correct. Condone sign errors.

Accept as part of a vector equation.

(b)B1

M1

Seen or implied (a bright candidate might realise that if taking moments about FC then the two squares cancel each other).

Moments about FC or a parallel axis or BOE. All terms required, and dimensionally

A1	Correct unsimplified equation for their axis
A1	Or equivalent with no errors seen Accept 0.36a or better (0.3590a)
(c)B1ft	Allow use of symmetry seen or implied. Accept $\overline{y} = \overline{x}$ (From FE, $\overline{y} = \frac{28a + 3\pi a}{8 + \pi}$) Accept +/-
M1	Correct strategy to find a relevant angle $(\theta \text{ or } 90 - \theta) \text{ Need to substitute their values of } \overline{x} \text{ and distance from } F \neq \frac{4a}{\pi}.$
A1ft	Correct unsimplified expression for a relevant angle. Follow their \bar{x} and \bar{y}
A1	6.1 or better (6.10067) The question defines θ as measured in degrees. 0.106 can score B1M1A1ftA0 Do not ISW

Question	Scheme	Marks	AOs
6(a)	Mass of cone = $\int_{0}^{9} \pi y^{2} \lambda x dx = \pi \lambda \int_{0}^{9} \frac{x^{3}}{9} dx$	M1	3.4
	$=\pi\lambda \left[\frac{x^4}{36}\right]_0^9 \left(=\frac{729\pi\lambda}{4}(kg)\right)$	A1	1.1b
	Moments: $\int_{0}^{9} \pi y^{2} \lambda x \times x dx = \pi \lambda \int_{0}^{9} \frac{x^{4}}{9} dx$	M1	3.4
	$= \frac{\pi\lambda}{45} \left[x^5 \right]_0^9 \left(= \frac{\pi\lambda}{5} \times 9^4 \right)$	A1	1.1b
	$\Rightarrow d = \frac{\frac{\pi\lambda}{5} \times 9^4}{\frac{\pi\lambda}{4} \times 9^3}$	DM1	2.1
	$d = \frac{36}{5} = 7.2 \text{ (cm)}$	A1	1.1b
		(6)	
(b)	Remains at rest ⇒ centre of mass at centre of plane surface	B1	2.1
	Moments about diameter of plane surface:	M1	3.1b
	$(9-d)W\left\{=\left(9-\frac{36}{5}\right)W\right\}=\frac{3}{8}\times3\times kW$	A1ft	1.1b
	$k = \frac{8}{5}$	A1	1.1b
		(4)	
		(10 n	narks)
Notes:			
	NB: Some candidates are confusing the mass and the volume. For the first M1A1: - If they have a correct method for the mass and they tell you that this is mass, award to marks.		
	If they have a correct method for the mass say nothing, but use it correctly, award the marks.If they have a correct method for the mass, say nothing, and use it as the moment, then M0 because this implies that they do not think it is the mass.		
M1	Use the model to find the mass of the cone. Allow without limits.		
AI	Correct integration. Correct limits seen or implied Substitution not required.		

	Allow $2/2$ if π not seen and consistent with (b) if attempted
M1	Use the model to find the moment of the cone (usual rules for integration) Allow without limits
A1	Correct integration. Correct limits seen or implied Substitution not required. Allow $2/2$ if π not seen and consistent with (a)
M1	Complete method to find the distance of the centre of mass from the vertex. A complete method requires the two preceding M marks. They need to get as far as a value for d. If they have a method that comes directly to this stage you might not see the λ or π
A1	Correct only If all you see is \Rightarrow d = $\frac{9^5}{45} \div \frac{9^4}{36}$ or even \Rightarrow d = $\frac{9}{5} \times 4$ then award 6/6 Allow 6/6 if π not seen throughout but otherwise correct
(b)B1	Correct deduction for location of c of m Stated or implied by their moments equation
M1	Moments about diameter of plane face(s) M0 if the moments equation contradicts the centre of mass being on the interface M0 if using volume in place of mass
A1ft	Correct unsimplified equation. Follow their 7.2 Alternative moments equations: Using vertex: $W\overline{x} + kW\left(9 + \frac{3}{8} \times 3\right) = (W + kW) \times 9$ Using base: $W(12 - \overline{x}) + kW\left(3 - 3 \times \frac{3}{8}\right) = (W + kW)3$ If they are working with the axis at an angle they will possibly have trig terms which should cancel.
A1	Correct only

Question	Scheme	Marks	AOs
7(a)	Conservation of energy:	M1	3.1b
	$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + mg \times \frac{2a}{5}(1 - \cos\theta)$	A1	1.1b
	Equation of motion towards O	M1	3.1b
	$T - mg \cos \theta = \frac{5mv^2}{2a}$	A1	1.1b
	Complete method to find T in terms of u, a and θ	DM1	2.1
	$T = \operatorname{mg} \cos \theta + \frac{5\operatorname{m}}{2\operatorname{a}} \left(\operatorname{u}^{2} - \frac{4\operatorname{a}}{5} \operatorname{g} \left(1 - \cos \theta \right) \right)$ $= 3\operatorname{mg} \cos \theta - 2\operatorname{mg} + \frac{5\operatorname{mu}^{2}}{2\operatorname{a}} *$	A1*	2.2a
		(6)	
(b)	Require $T \ge 0$ when $\theta = \pi : \frac{5mu^2}{2a} \ge mg(2+3)$	M1	2.1
	$u^2 \ge 2ag$, minimum $u = \sqrt{2ag}$	A1	1.1b
		(2)	
(c)	$\theta = \frac{\pi}{2}$, $u = 2\sqrt{ag}$ \Rightarrow $T = -2mg + \frac{5m}{2a} \times 4ag$	B1	1.1b
	8g		
	Magnitude of acceleration = $g\sqrt{64+1}$	M1	2.1
	$=\sqrt{65}\mathrm{g}$	A1	1.1b
		(3)	
(d)	Consider the uniformity / dimensions of the package String might be extensible. include the weight of the string	B1	3.5c
		(1)	

	(12 marks)
Notes:	
	Need all terms. Dimensionally correct. Condone sign errors and sin/cos confusion
(a)M1	Allow with $\frac{2a}{5}\cos\theta$ in place of $\frac{2a}{5}(1-\cos\theta)$
A1	Correct unsimplified equation
M1	Need all terms. Dimensionally correct. Condone sign errors and sin/cos confusion
A1	Correct unsimplified equation
M1	Complete method, e.g. using conservation of energy and the circular motion, to form sufficient equations to obtain an expression without v
IVII	A complete method requires the two preceding M marks.
A1*	Obtain given result from correct working
(b)M1	Identify correct condition for complete circle and solve for u. Condone working from T = 0
	Allow $u \ge \sqrt{2ag}$
A1	Condone $u > \sqrt{2ag}$, and $u = \sqrt{2ag}$
(c)B1	Correct T or v ² seen or implied
M1	Use of Pythagoras with their horizontal component of acceleration
A1	Correct only, or 8.1g (8.062g) or better
	Any valid suggestion relating to the model.
(d) B1	Allow negatives of statements within the model
	e.g. not model the package as a particle.
	B0 if multiple suggestions including one incorrect. B0 for accuracy of g as this is not part of the description of the model.
	Bo for accuracy of g as this is not part of the description of the model.

Question	Scheme	Marks	AOs
8(a)	At equilibrium: $0.5g = \frac{25e}{1.25}$, $e = \frac{0.5 \times 10 \times 1.25}{25} = \frac{1}{4}$	B1	3.3
	For taut string, when distance x from equilibrium, equation of motion	M1	2.1
	Alternative for M1: Conservation of energy using a known point (E or B) and a general post From E: $\frac{25e^2}{2 \times 1.25} + \text{KE}(\text{constant} \neq 0) + 0.5 \text{ gx} = \frac{25(e+x)^2}{2 \times 1.25} + \frac{1}{2}0.5 \text{v}^2 + 00000000000000000000000000000000000$		1
	$\frac{\text{differentiate wit x for ivit}}{1.25} = \frac{3.3 \text{ g}}{2 \text{ dx}}$	I	
	$\frac{25(e+x)}{1.25} - 0.5g = -0.5\ddot{x}$	A1ft	1.1b
	$\ddot{x} = -40x$ hence SHM*	A1*	2.2a
	Periodic time:	M1	3.4
	$T = \frac{2\pi}{\sqrt{40}} = \frac{\pi}{\sqrt{10}} *$	A1*	2.2a
		(6)	
(b)	Max KE = $2.5 = \frac{1}{2} \times \frac{1}{2} \times \text{max } v^2$ $\Rightarrow \text{max } v^2 = 10$	B1	1.2
	Max speed = $a\omega$: $\sqrt{10} = a\sqrt{40}$	M1	3.4
	AB = 1.25 + $\frac{1}{4}$ + $\frac{1}{2}$ = 2 (m) *	A1*	1.1b
		(3)	
(b) alt	Energy: $\frac{25e^2}{2.5} + 2.5 + 0.5ga = \frac{25(e+a)^2}{2.5}$	B1	
	Solve for a	M1	
	$AB = 1.25 + \frac{1}{4} + \frac{1}{2} = 2 (m) *$	A1*	1.1b
		(3)	
(c)	$a = 0.5$, $x = 0.5\cos\sqrt{40}t$	B1	2.2a
	$-0.25 = 0.5\cos\sqrt{40}t$ $\Rightarrow t = 0.3311$	M1	3.1a
	$v^2 = 40(0.5^2 - 0.25^2) = \frac{15}{2}$	M1	3.4
	Total time = $2 \times 0.3311 + \frac{2 \times \sqrt{7.5}}{10}$	DM1	3.1a
	=1.2(s) or better	A1	2.2a

Notes Correct only Award if see $\operatorname{reg} = \frac{\lambda e}{1}$ used in their equation of motion Notes Supplies to the sign of motion with x measured from the equilibrium position. Need all terms and dimensionally correct. Allow with their $e \neq 0$. Condone sign errors. Allow with a in place of χ Correct unsimplified equation with their $e \neq 0$. Condone sign errors. Allow with a in place of χ Could have the negative of the whole equation or x replaced with $-x$ throughout Reach given conclusion from correct working. Condone correct conclusion without explanation Use the model to find the periodic time: $T = \frac{2\pi}{\omega}$ From an equation of the form $\chi = -\omega^2 \chi$ From an equation of the form $\chi = -\omega^2 \chi$ From an equation of the form $\chi = -\omega^2 \chi$ Wailable if only error is not to conclude SHM Use the KE to find max vor max v ² William Use the model to find the amplitude of the motion Al ² Obtain the given answer from correct working. Find the time until the string goes slack If working from $\chi = 0.5 \sin \sqrt{40} t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ Use the model to find vor v ² at the instant the string goes slack (v = 2.738) Using SHM formula or conservation of energy. One plete method to find the total time until return to B Requires the preceding M marks One plete method to find the total time until return to B Requires the preceding M marks One plete method to find the total time until return to B Requires the preceding M marks One plete method to find the total time until return to B Requires the preceding M marks One plete method to find the total time until return to B Requires the preceding M marks One plete method to find the total time until return to B One plete method to find the total time until return to B One plete method to find the total time until return to B One plete method to find the			(5)	
Notes: (a)B1 Correct only Award if see $mg = \frac{\lambda e}{1}$ used in their equation of motion Equation of motion with x measured from the equilibrium position. Need all terms and dimensionally correct. Allow with their $e \neq 0$. Condone sign errors. Allow with a in place of \tilde{x} Correct unsimplified equation with their $e \Rightarrow 0$. Condone sign errors. Allow with a in place of \tilde{x} Correct unsimplified equation with their $e \Rightarrow 0$. Condone sign errors. Allow with a in place of \tilde{x} Could have the negative of the whole equation or x replaced with − x throughout A1* Reach given conclusion from correct working. Condone correct conclusion without explanation M1 Use the model to find the periodic time: $T = \frac{2\pi}{\omega}$ From an equation of the form $\tilde{x} = -\omega^2 x$ A1* Obtain given answer from correct working throughout. Available if only error is not to conclude SHM (b)B1 Use the KE to find max v or max v² M1 Use the model to find the amplitude of the motion A1* Obtain the given answer from correct working. (b) alt B1 Using correct λ and 1 and e or their e M1 Requires an energy equation with all the right terms A1* Obtain the given answer from correct working. (c) B1 Correct equation for SHM seen or implied Find the time until the string goes slack M1 If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ M1 Use the model to find v or v^2 at the instant the string goes slack ($v = 2.738$) Using SHM formula or conservation of energy. Complete method to find the total time until return to B				
Notes: (a)B1 Correct only Award if see $mg = \frac{\lambda e}{1}$ used in their equation of motion Equation of motion with x measured from the equilibrium position. Need all terms and dimensionally correct. Allow with their $e \neq 0$. Condone sign errors. Allow with a in place of \tilde{x} Correct unsimplified equation with their $e \Rightarrow 0$. Condone sign errors. Allow with a in place of \tilde{x} Correct unsimplified equation with their $e \Rightarrow 0$. Condone sign errors. Allow with a in place of \tilde{x} Could have the negative of the whole equation or x replaced with − x throughout A1* Reach given conclusion from correct working. Condone correct conclusion without explanation M1 Use the model to find the periodic time: $T = \frac{2\pi}{\omega}$ From an equation of the form $\tilde{x} = -\omega^2 x$ A1* Obtain given answer from correct working throughout. Available if only error is not to conclude SHM (b)B1 Use the KE to find max v or max v² M1 Use the model to find the amplitude of the motion A1* Obtain the given answer from correct working. (b) alt B1 Using correct λ and 1 and e or their e M1 Requires an energy equation with all the right terms A1* Obtain the given answer from correct working. (c) B1 Correct equation for SHM seen or implied Find the time until the string goes slack M1 If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ M1 Use the model to find v or v^2 at the instant the string goes slack ($v = 2.738$) Using SHM formula or conservation of energy. Complete method to find the total time until return to B				
Notes: (a)B1 Correct only Award if see $mg = \frac{\lambda e}{1}$ used in their equation of motion Equation of motion with x measured from the equilibrium position. Need all terms and dimensionally correct. Allow with their $e \neq 0$. Condone sign errors. Allow with a in place of \tilde{x} Correct unsimplified equation with their $e \Rightarrow 0$. Condone sign errors. Allow with a in place of \tilde{x} Correct unsimplified equation with their $e \Rightarrow 0$. Condone sign errors. Allow with a in place of \tilde{x} Could have the negative of the whole equation or x replaced with − x throughout A1* Reach given conclusion from correct working. Condone correct conclusion without explanation M1 Use the model to find the periodic time: $T = \frac{2\pi}{\omega}$ From an equation of the form $\tilde{x} = -\omega^2 x$ A1* Obtain given answer from correct working throughout. Available if only error is not to conclude SHM (b)B1 Use the KE to find max v or max v² M1 Use the model to find the amplitude of the motion A1* Obtain the given answer from correct working. (b) alt B1 Using correct λ and 1 and e or their e M1 Requires an energy equation with all the right terms A1* Obtain the given answer from correct working. (c) B1 Correct equation for SHM seen or implied Find the time until the string goes slack M1 If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ M1 Use the model to find v or v^2 at the instant the string goes slack ($v = 2.738$) Using SHM formula or conservation of energy. Complete method to find the total time until return to B				
(a)B1 Correct only Award if see $mg = \frac{\lambda e}{l}$ used in their equation of motion By Equation of motion with x measured from the equilibrium position. Need all terms and dimensionally correct. Allow with their $e \neq 0$. Condone sign errors. Allow with a in place of \tilde{x} Correct unsimplified equation with their $e \neq 0$. Condone sign errors. Allow with a in place of \tilde{x} Correct unsimplified equation with their $e \neq 0$. Condone sign errors. Allow with a in place of \tilde{x} Correct unsimplified equation with their $e \neq 0$. Condone sign errors. Allow with a in place of \tilde{x} Could have the negative of the whole equation or x replaced with $-x$ throughout A1* Reach given conclusion from correct working. Condone correct conclusion without explanation M1 Use the model to find the periodic time: $T = \frac{2\pi}{\omega}$ From an equation of the form $\tilde{x} = -\omega^2 x$ A1* Obtain given answer from correct working throughout. Available if only error is not to conclude SHM (b)B1 Use the KE to find max v or max v^2 M1 Use the model to find the amplitude of the motion A1* Obtain the given answer from correct working. (b) alt B1 Requires an energy equation with all the right terms A1* Obtain the given answer from correct working. (c) B1 Correct equation for SHM seen or implied Find the time until the string goes slack If working from $x = 0.5 \sin \sqrt{40t}$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ M1 Use the model to find v or v^2 at the instant the string goes slack ($v = 2.738$) Using SHM formula or conservation of energy. Complete method to find the total time until return to B			(14 n	narks)
Equation of motion with x measured from the equilibrium position. Need all terms and dimensionally correct. Allow with their $e \neq 0$. Condone sign errors. Allow with a in place of \bar{x} Correct unsimplified equation with their $e \neq 0$. Condone sign errors. Allow with a in place of \bar{x} Correct unsimplified equation with their $e \neq 0$. Condone sign errors. Allow with a in or $x \neq 0$. Could have the negative of the whole equation or $x \neq 0$. Reach given conclusion from correct working. Condone correct conclusion without explanation M1	Notes:			
M1 dimensionally correct. Allow with their e ≠ 0. Condone sign errors. Allow with a in place of \ddot{x} Correct unsimplified equation with their e or e ≠ 0. Could have the negative of the whole equation or x replaced with − x throughout Reach given conclusion from correct working. Condone correct conclusion without explanation M1 Use the model to find the periodic time: $T = \frac{2\pi}{\omega}$ From an equation of the form $\ddot{x} = -\omega^2 x$ A1* Obtain given answer from correct working throughout. Available if only error is not to conclude SHM (b)B1 Use the KE to find max v or max v² M1 Use the model to find the amplitude of the motion A1* Obtain the given answer from correct working. (b) alt B1 Using correct λ and I and e or their e M1 Requires an energy equation with all the right terms A1* Obtain the given answer from correct working. (c) B1 Correct equation for SHM seen or implied Find the time until the string goes slack If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ Use the model to find v or v² at the instant the string goes slack (v = 2.738) Using SHM formula or conservation of energy. Complete method to find the total time until return to B	(a)B1	Correct only Award if see $mg = \frac{\lambda e}{l}$ used in their equation of motion		
Alft Could have the negative of the whole equation or x replaced with – x throughout Al* Reach given conclusion from correct working. Condone correct conclusion without explanation M1 Use the model to find the periodic time: $T = \frac{2\pi}{\omega}$ From an equation of the form $\ddot{x} = -\omega^2 x$ Al* Obtain given answer from correct working throughout. Available if only error is not to conclude SHM (b)B1 Use the KE to find max v or max v² M1 Use the model to find the amplitude of the motion Al* Obtain the given answer from correct working. (b) alt B1 Using correct λ and 1 and e or their e M1 Requires an energy equation with all the right terms Al* Obtain the given answer from correct working. (c) B1 Correct equation for SHM seen or implied Find the time until the string goes slack M1 If working from $x = 0.5\sin\sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}}\sin^{-1}\frac{1}{2}$ Use the model to find v or v² at the instant the string goes slack (v = 2.738) Using SHM formula or conservation of energy. Complete method to find the total time until return to B	M1	dimensionally correct. Allow with their $e \neq 0$. Condone sign errors. Allow with a in		
Condone correct conclusion without explanation Use the model to find the periodic time: $T = \frac{2\pi}{\omega}$ From an equation of the form $\ddot{x} = -\omega^2 x$ A1* Obtain given answer from correct working throughout. Available if only error is not to conclude SHM (b)B1 Use the KE to find max v or max v² M1 Use the model to find the amplitude of the motion A1* Obtain the given answer from correct working. (b) alt B1 Using correct λ and I and e or their e M1 Requires an energy equation with all the right terms A1* Obtain the given answer from correct working. (c) B1 Correct equation for SHM seen or implied Find the time until the string goes slack If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ Use the model to find v or v² at the instant the string goes slack (v = 2.738) Using SHM formula or conservation of energy. Complete method to find the total time until return to B	A1ft	Could have the negative of the whole equation		
From an equation of the form $\ddot{x} = -\omega^2 x$ Al* Obtain given answer from correct working throughout. Available if only error is not to conclude SHM (b)B1 Use the KE to find $\max v$ or $\max v^2$ M1 Use the model to find the amplitude of the motion Al* Obtain the given answer from correct working. (b) alt B1 Using correct λ and l and e or their e M1 Requires an energy equation with all the right terms Al* Obtain the given answer from correct working. (c) B1 Correct equation for SHM seen or implied Find the time until the string goes slack If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ M1 Use the model to find v or v^2 at the instant the string goes slack ($v = 2.738$) Using SHM formula or conservation of energy. Complete method to find the total time until return to B	A1*			
Obtain given answer from correct working throughout. Available if only error is not to conclude SHM (b)B1 Use the KE to find max v or max v² M1 Use the model to find the amplitude of the motion A1* Obtain the given answer from correct working. (b) alt B1 Using correct λ and 1 and e or their e M1 Requires an energy equation with all the right terms A1* Obtain the given answer from correct working. (c) B1 Correct equation for SHM seen or implied Find the time until the string goes slack If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ M1 Use the model to find v or v² at the instant the string goes slack (v = 2.738) Using SHM formula or conservation of energy. Complete method to find the total time until return to B	M1	Use the model to find the periodic time: $T = \frac{2\pi}{\omega}$		
Available if only error is not to conclude SHM (b)B1 Use the KE to find max v or max v² M1 Use the model to find the amplitude of the motion A1* Obtain the given answer from correct working. (b) alt B1 Using correct λ and 1 and e or their e M1 Requires an energy equation with all the right terms A1* Obtain the given answer from correct working. (c) B1 Correct equation for SHM seen or implied Find the time until the string goes slack If working from $x = 0.5\sin\sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}}\sin^{-1}\frac{1}{2}$ M1 Use the model to find v or v^2 at the instant the string goes slack ($v = 2.738$) Using SHM formula or conservation of energy. Complete method to find the total time until return to B				
M1 Use the model to find the amplitude of the motion A1* Obtain the given answer from correct working. (b) alt B1 Using correct λ and 1 and e or their e M1 Requires an energy equation with all the right terms A1* Obtain the given answer from correct working. (c) B1 Correct equation for SHM seen or implied Find the time until the string goes slack If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ M1 Use the model to find v or v^2 at the instant the string goes slack ($v = 2.738$) Using SHM formula or conservation of energy. Complete method to find the total time until return to B	A1*			
A1* Obtain the given answer from correct working. (b) alt B1 Using correct λ and I and e or their e M1 Requires an energy equation with all the right terms A1* Obtain the given answer from correct working. (c) B1 Correct equation for SHM seen or implied Find the time until the string goes slack If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ Use the model to find v or v^2 at the instant the string goes slack ($v = 2.738$) Using SHM formula or conservation of energy. Complete method to find the total time until return to B	(b)B1	Use the KE to find max v or max v ²		
(b) alt B1 Using correct λ and I and e or their e M1 Requires an energy equation with all the right terms A1* Obtain the given answer from correct working. (c) B1 Correct equation for SHM seen or implied Find the time until the string goes slack If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ M1 Use the model to find v or v^2 at the instant the string goes slack ($v = 2.738$) Using SHM formula or conservation of energy. Complete method to find the total time until return to B	M1	Use the model to find the amplitude of the motion		
B1	A1*	Obtain the given answer from correct working.		
A1* Obtain the given answer from correct working. (c) B1 Correct equation for SHM seen or implied Find the time until the string goes slack If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ Use the model to find v or v^2 at the instant the string goes slack ($v = 2.738$) Using SHM formula or conservation of energy. Complete method to find the total time until return to B		Using correct λ and 1 and e or their e		
(c) B1 Correct equation for SHM seen or implied Find the time until the string goes slack If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ Use the model to find v or v^2 at the instant the string goes slack ($v = 2.738$) Using SHM formula or conservation of energy. Complete method to find the total time until return to B	M1	Requires an energy equation with all the right terms		
Find the time until the string goes slack If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ Use the model to find v or v^2 at the instant the string goes slack ($v = 2.738$) Using SHM formula or conservation of energy. Complete method to find the total time until return to B	A1*	Obtain the given answer from correct working.		
M1 If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{T}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$ M1 Use the model to find v or v^2 at the instant the string goes slack ($v = 2.738$) Using SHM formula or conservation of energy. Complete method to find the total time until return to B	(c) B1	Correct equation for SHM seen or implied		
If working from $x = 0.5 \sin \sqrt{40t}$ need $\frac{1}{4} + \frac{1}{\sqrt{40}} \sin \frac{1}{2}$ Use the model to find v or v^2 at the instant the string goes slack $(v = 2.738)$ Using SHM formula or conservation of energy. Complete method to find the total time until return to B				
Using SHM formula or conservation of energy. Complete method to find the total time until return to B		If working from $x = 0.5 \sin \sqrt{40}t$ need $\frac{1}{4} + \frac{1}{\sqrt{40}} \sin^{-1} \frac{1}{2}$		
Complete method to find the total time until return to B	M1		8)	
<u> </u>	M1	Complete method to find the total time until return to B		

	If they use suvat to find the time as a projectile it must be a complete method e.g. $\sqrt{\frac{15}{2}} = -\sqrt{\frac{15}{2}} + \text{gt or a combination of } v^2 = u^2 + 2\text{as and } s = ut + \frac{1}{2}at^2$
A1	=1.2(s) or better Condone an answer to > 2 s.f.
	Not scored if they have used 9.8.