Paper	1:	Pure	Mathematics	1	Mark Scheme
-------	----	------	-------------	---	-------------

Quest	on Scheme	Marks	AOs
1(a)	(i) $\frac{dy}{dx} = 12x^3 - 24x^2$	M1	1.1b
		A1	1.1b
	(ii) $\frac{d^2 y}{dx^2} = 36x^2 - 48x$	A1ft	1.1b
		(3)	
(b)	Substitutes $x = 2$ into their $\frac{dy}{dx} = 12 \times 2^3 - 24 \times 2^2$	M1	1.1b
	Shows $\frac{dy}{dx} = 0$ and states "hence there is a stationary point"	A1	2.1
		(2)	
(c)	Substitutes $x = 2$ into their $\frac{d^2 y}{dx^2} = 36 \times 2^2 - 48 \times 2$	M1	1.1b
	$\frac{d^2 y}{dx^2} = 48 > 0$ and states "hence the stationary point is a minimum"	Alft	2.2a
		(2)	
		(7 n	narks)
Notes			
(a)(i) M1:	Differentiates to a cubic form		
A1:	$\frac{\mathrm{d}y}{\mathrm{d}x} = 12x^3 - 24x^2$		
(a)(ii)			
A1ft:	Achieves a correct $\frac{d^2 y}{dx^2}$ for their $\frac{dy}{dx} = 36x^2 - 48x$		
(b)			
M1:	Substitutes $x = 2$ into their $\frac{dy}{dx}$		
A1:	Shows $\frac{dy}{dx} = 0$ and states "hence there is a stationary point" All aspects of the state o	he proof	
(a)	must be correct		
(c)	d^2v		
M1:	Substitutes $x = 2$ into their $\frac{d^2 y}{dx^2}$		
	Alternatively calculates the gradient of <i>C</i> either side of $x = 2$		
A1ft:	For a correct calculation, a valid reason and a correct conclusion. 1^2		
	Follow through on an incorrect $\frac{d^2 y}{dx^2}$		

Quest	ion	Scheme	Marks	AOs	
2(a) Uses $s = r\theta \Rightarrow$	$>3 = r \times 0.4$	M1	1.2	
		$\Rightarrow OD = 7.5 \text{ cm}$	Al	1.1b	
			(2)		
(b)	Uses angle A	$OB = (\pi - 0.4)$ or uses radius is $(12 - `7.5')$ cm	M1	3.1a	
	Uses area of s	ector $=\frac{1}{2}r^2\theta = \frac{1}{2} \times (12 - 7.5)^2 \times (\pi - 0.4)$	M1	1.1b	
		$= 27.8 \text{cm}^2$	Alft	1.1b	
			(3)		
			(5 n	narks)	
Notes					
(a) M1:	Attempts to use the c	correct formula $s = r\theta$ with $s = 3$ and $\theta = 0.4$			
A1:	OD = 7.5 cm (An an marks)	swer of 7.5cm implies the use of a correct formula	and scores bot	th	
(b)					
M1:	-	be implied by the use of $AOB = awrt 2.74$ or uses	radius is		
M1:	(12 – their '7.5') Follow through on their radius (12 – their OD) and their angle				
A1ft:	Follow through on their radius (12 – their <i>OD</i>) and their angle Allow awrt 27.8 cm ² . (Answer 27.75862562). Follow through on their (12 – their '7.5')				
AII.		through on a radius that is negative.	(12 - uten 7.5	,)	

Quest	ion Scheme	Marks	AOs		
3(a	Attempts $(x-2)^2 + (y+5)^2 =$	M1	1.1b		
	Centre (2, -5)	A1	1.1b		
		(2)			
(b)	Sets $k + 2^2 + 5^2 > 0$	M1	2.2a		
	$\Rightarrow k > -29$	A1ft	1.1b		
		(2)			
		(4 n	narks)		
Notes	:				
(a)					
M1:	Attempts to complete the square so allow $(x-2)^2 + (y+5)^2 = \dots$				
A1:	States the centre is at $(2, -5)$. Also allow written separately $x = 2, y = -5$				
	(2, -5) implies both marks				
(b)					
M1:	Deduces that the right hand side of their $(x \pm)^2 + (y \pm)^2 =$ is > 0 or				
A1ft:	$k > -29$ Also allow $k \ge -29$ Follow through on their rhs of $(x \pm)^2 + (y \pm)^2 =$				

Quest	tion	Scheme	Marks	AOs
4		Writes $\int \frac{t+1}{t} dt = \int 1 + \frac{1}{t} dt$ and attempts to integrate	M1	2.1
		$=t+\ln t \ (+c)$	M1	1.1b
		$(2a+\ln 2a)-(a+\ln a)=\ln 7$	M1	1.1b
		$a = \ln \frac{7}{2}$ with $k = \frac{7}{2}$	A1	1.1b
			(4 n	1arks)
Notes	5:			
M1:	Atter	mpts to divide each term by t or alternatively multiply each term by t^{-1}		
M1:	Integ	grates each term and knows $\int_{t}^{1} dt = \ln t$. The + <i>c</i> is not required for this	mark	
M1:		titutes in both limits, subtracts and sets equal to ln7		
A1:	Proc	eeds to $a = \ln \frac{7}{2}$ and states $k = \frac{7}{2}$ or exact equivalent such as 3.5		

Ques	tion	Scheme	Marks	AOs
5	5	Attempts to substitute $=\frac{x+1}{2}$ into $y \Rightarrow y = 4\left(\frac{x+1}{2}\right) - 7 + \frac{6}{(x+1)}$	M1	2.1
		Attempts to write as a single fraction $y = \frac{(2x-5)(x+1)+6}{(x+1)}$	M1	2.1
		$y = \frac{2x^2 - 3x + 1}{x + 1} \qquad a = -3, b = 1$	A1	1.1b
			(3 n	narks)
Notes	s:			
M1:	Scor	e for an attempt at substituting $t = \frac{x+1}{2}$ or equivalent into $y = 4t - 7 + 1$	$\frac{3}{t}$	
M1:	Awa	rd this for an attempt at a single fraction with a correct common denon	ninator.	
	Thei	r $4\left(\frac{x+1}{2}\right) - 7$ term may be simplified first		
A1:	Corr	ect answer only $y = \frac{2x^2 - 3x + 1}{x + 1}$ $a = -3, b = 1$		

Question	Scheme	Marks	AOs
6 (a)(i)	10750 barrels	B1	3.4
(ii)	 Gives a valid limitation, for example The model shows that the daily volume of oil extracted would become negative as <i>t</i> increases, which is impossible States when <i>t</i> = 10, <i>V</i> = −1500 which is impossible States that the model will only work for 0 ≤ <i>t</i> ≤ 64/7 	B1	3.5b
		(2)	
(b)(i)	Suggests a suitable exponential model, for example $V = Ae^{kt}$	M1	3.3
	Uses $(0,16000)$ and $(4,9000)$ in $\Rightarrow 9000 = 16000e^{4k}$	dM1	3.1b
	$\Rightarrow k = \frac{1}{4} \ln\left(\frac{9}{16}\right) \qquad \text{awrt} - 0.144$	M1	1.1b
	$V = 16000e^{\frac{1}{4}\ln\left(\frac{9}{16}\right)t}$ or $V = 16000e^{-0.144t}$	Al	1.1b
(ii)	Uses their exponential model with $t = 3 \Longrightarrow V = \text{awrt } 10400 \text{ barrels}$	B1ft	3.4
		(5)	
(a)(ii)	50 barrels scheme		
suita dM1: Uses With With With as a M1: Uses A1: Give case the r	gests a suitable exponential model, for example $V = Ae^{kt}$, $V = Ar^t$ or a able function such as $V = Ae^{kt} + b$ where the candidate chooses a value t is both $(0,16000)$ and $(4,9000)$ in their model. In $V = Ae^{kt}$ candidates need to proceed to $9000 = 16000e^{4k}$ In $V = Ae^{kt}$ candidates need to proceed to $9000 = 16000r^4$ In $V = Ae^{kt} + b$ candidates need to proceed to $9000 = (16000 - b)e^{4k} + b$ positive constant and $A + b = 16000$. Is a correct method to find all constants in the model. It is a suitable equation for the model passing through (or approximately to of decimal equivalents) both values $(0,16000)$ and $(4,9000)$. Possible model could be for example $16000e^{-0.144t}$ $V = 16000 \times (0.866)^t$ $V = 15800e^{-0.146t} + 200$	for b . where b is through in	the
(b)(ii)	ow through on their exponential model		

Ques	tion	Scheme	Marks	AOs
7	-	Attempts $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k} + \mathbf{i} - 9\mathbf{j} + 3\mathbf{k} = 3\mathbf{i} - 6\mathbf{j} + 4\mathbf{k}$	M1	3.1a
		Attempts to find any one length using 3-d Pythagoras	M1	2.1
		Finds all of $ AB = \sqrt{14}$, $ AC = \sqrt{61}$, $ BC = \sqrt{91}$	A1ft	1.1b
		$\cos BAC = \frac{14 + 61 - 91}{2\sqrt{14}\sqrt{61}}$	M1	2.1
		angle $BAC = 105.9^{\circ}$ *	A1*	1.1b
			(5)	
			(5 n	narks)
Notes	:			
M1:	Attemp	pts to find \overrightarrow{AC} by using $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$		
M1 :	Attemp	pts to find any one length by use of Pythagoras' Theorem		
A1ft:	Finds a	all three lengths in the triangle. Follow through on their $ AC $		
M1 :	Attemp	pts to find BAC using $\cos BAC = \frac{ AB ^2 + AC ^2 - BC ^2}{2 AB AC }$		
	Allow	this to be scored for other methods such as $\cos BAC = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{ AB AC }$		
A1*:	This is	a show that and all aspects must be correct. Angle $BAC = 105.9$ °		
L				

Question	Scheme	Marks	AOs
8 (a)	f(3.5) = -4.8, f(4) = (+)3.1	M1	1.1b
	Change of sign and function continuous in interval $[3.5, 4] \Rightarrow \text{Root } *$	A1*	2.4
		(2)	
(b)	Attempts $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \implies x_1 = 4 - \frac{3.099}{16.67}$	M1	1.1b
	x ₁ = 3.81	Al	1.1b
	$y = \ln(2x - 5)$	(2)	
(c)	Attempts to sketch both $y = \ln(2x - 5)$ and $y = 30 - 2x^2$ States that $y = \ln(2x - 5)$ meets $y = 30 - 2x^2$ in just one place, therefore $y = \ln(2x - 5) = 30 - 2x$ has just one root \Rightarrow f (x) = 0 has	M1	3.1a
	interestore $y = \ln(2x - 3) = 30 - 2x$ has just one root $\Rightarrow 1(x) = 0$ has just one root		2.7
		(2)	(arles)
Notes:		(01	narks)
A1*: f (3 con bein	empts $f(x)$ at both $x = 3.5$ and $x = 4$ with at least one correct to 1 signification. (5) and $f(4)$ correct to 1 sig figure (rounded or truncated) with a correct clusion. A reason could be change of sign, or $f(3.5) \times f(4) < 0$ or similar and continuous in this interval. A conclusion could be 'Hence root' or 'Therval'	reason and ar with $f(x)$	
	empts $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ evidenced by $x_1 = 4 - \frac{3.099}{16.67}$		
A1: Cor	rect answer only $x_1 = 3.81$		
(c) M1: For	a valid attempt at showing that there is only one root. This can be achied Sketching graphs of $y = \ln(2x - 5)$ and $y = 30 - 2x^2$ on the same axe Showing that $f(x) = \ln(2x - 5) + 2x^2 - 30$ has no turning points Sketching a graph of $f(x) = \ln(2x - 5) + 2x^2 - 30$	-	
A1: Sco	red for correct conclusion		

Questio	Scheme	Marks	AOs
9(a)	$\tan\theta + \cot\theta \equiv \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}$	M1	2.1
	$=\frac{\sin^2\theta+\cos^2\theta}{\sin\theta\cos\theta}$	A1	1.1b
	$=\frac{1}{\frac{1}{2}\sin 2\theta}$	M1	2.1
	$= 2 \operatorname{cosec} 2\theta *$	A1*	1.1b
		(4)	
(b)	States $\tan \theta + \cot \theta = 1 \Rightarrow \sin 2\theta = 2$ AND no real solutions as $-1 \le \sin 2\theta \le 1$	B1	2.4
		(1)	
		(5 n	narks)
Notes:			
A1: A4 M1: U3 A1*: C4 N4	Trites $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\cot \theta = \frac{\cos \theta}{\sin \theta}$ whieves a correct intermediate answer of $\frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}$ we set the double angle formula $\sin 2\theta = 2\sin \theta \cos \theta$ completes proof with no errors. This is a given answer. There are many alternative methods. For example $\sin \theta + \cot \theta = \tan \theta + \frac{1}{\tan \theta} = \frac{\tan^2 \theta + 1}{\tan \theta} = \frac{\sec^2 \theta}{\tan \theta} = \frac{1}{\cos^2 \theta \times \frac{\sin \theta}{\cos \theta}} = \frac{1}{\cos \theta \times \sin \theta}$ where $\sin \theta$ is the method.	—— then a in θ	is the
	ored for sight of $\sin 2\theta = 2$ and a reason as to why this equation has no r ssible reasons could be $-1 \leq \sin 2\theta \leq 1$ and therefore $\sin 2\theta \neq 2$	eal solution	ns.
or	$\sin 2\theta = 2 \Longrightarrow 2\theta = \arcsin 2$ which has no answers as $-1 \le \sin 2\theta \le 1$		

Quest	ion Scheme	Marks	AOs
10	Use of $\frac{\sin(\theta+h) - \sin\theta}{(\theta+h) - \theta}$	B1	2.1
	Uses the compound angle identity for $\sin(A+B)$ with $A = \theta$, $B = h$ $\Rightarrow \sin(\theta+h) = \sin\theta\cos h + \cos\theta\sin h$	M1	1.1b
	Achieves $\frac{\sin(\theta+h) - \sin\theta}{h} = \frac{\sin\theta\cos h + \cos\theta\sin h - \sin\theta}{h}$	A1	1.1b
	$=\frac{\sin h}{h}\cos\theta + \left(\frac{\cos h - 1}{h}\right)\sin\theta$	M1	2.1
	Uses $h \to 0$, $\frac{\sin h}{h} \to 1$ and $\frac{\cos h - 1}{h} \to 0$		
	Hence the $\lim_{h\to 0} \frac{\sin(\theta+h) - \sin\theta}{(\theta+h) - \theta} = \cos\theta$ and the gradient of	A1*	2.5
	the chord \rightarrow gradient of the curve $\Rightarrow \frac{dy}{d\theta} = \cos \theta *$		
		(5 n	narks)
Notes	:		
B1:	States or implies that the gradient of the chord is $\frac{\sin(\theta + h) - \sin \theta}{h}$ or simil	ar such as	
	$\frac{\sin(\theta + \delta\theta) - \sin\theta}{\theta + \delta\theta - \theta} \text{ for a small } h \text{ or } \delta\theta$		
M1:	Uses the compound angle identity for $sin(A + B)$ with $A = \theta$, $B = h$ or $\delta\theta$		
A1:	Obtains $\frac{\sin\theta\cos h + \cos\theta\sin h - \sin\theta}{h}$ or equivalent		
M1:	Writes their expression in terms of $\frac{\sin h}{h}$ and $\frac{\cos h - 1}{h}$		
A1*:	Uses correct language to explain that $\frac{dy}{d\theta} = \cos \theta$		
	For this method they should use all of the given statements $h \rightarrow 0$, $\frac{\sin h}{h}$ –	→ 1,	
	$\frac{\cos h - 1}{h} \to 0 \text{meaning that the limit}_{h \to 0} \frac{\sin(\theta + h) - \sin \theta}{(\theta + h) - \theta} = \cos \theta$		
	and therefore the gradient of the chord \rightarrow gradient of the curve $\Rightarrow \frac{dy}{d\theta} =$	$\cos \theta$	

$\frac{(\theta+h)-\theta}{(\theta+h)-\theta} = \frac{\sin\left(\theta+\frac{h}{2}+\frac{h}{2}\right)-\sin\left(\theta+\frac{h}{2}-\frac{h}{2}\right)}{h} \qquad M1 \qquad 1.1t$ and uses the compound angle identity for $\sin(A+B)$ and $\sin(A-B)$ with $A=\theta+\frac{h}{2}, B=\frac{h}{2}$ Achieves $\frac{\sin(\theta+h)-\sin\theta}{h} = \frac{\left[\sin\left(\theta+\frac{h}{2}\right)\cos\left(\frac{h}{2}\right)-\cos\left(\theta+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right)\right]}{h} \qquad A1 \qquad 1.1t$ $=\frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}\times\cos\left(\theta+\frac{h}{2}\right) \qquad M1 \qquad 2.1$ Uses $h \to 0, \frac{h}{2} \to 0$ hence $\frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \to 1$ and $\cos\left(\theta+\frac{h}{2}\right) \to \cos\theta$	Question	Scheme	Marks	AOs
and uses the compound angle identity for $\sin(A + B)$ and $\sin(A - B)$ with $A = \theta + \frac{h}{2}$, $B = \frac{h}{2}$ Achieves $\frac{\sin(\theta + h) - \sin\theta}{h} = \frac{\left[\sin\left(\theta + \frac{h}{2}\right)\cos\left(\frac{h}{2}\right) + \cos\left(\theta + \frac{h}{2}\right)\sin\left(\frac{h}{2}\right)\right] - \left[\sin\left(\theta + \frac{h}{2}\right)\cos\left(\theta + \frac{h}{2}\right)\sin\left(\frac{h}{2}\right)\right]}{h}$ A1 1.10 $\frac{\sin\left(\theta + \frac{h}{2}\right)\cos\left(\frac{h}{2}\right) + \cos\left(\theta + \frac{h}{2}\right)\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \rightarrow \cos\left(\theta + \frac{h}{2}\right)$ M1 2.1 Uses $h \to 0, \frac{h}{2} \to 0$ hence $\frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \to 1$ and $\cos\left(\theta + \frac{h}{2}\right) \to \cos\theta$ Therefore the $\liminf_{h \to 0} \frac{\sin(\theta + h) - \sin\theta}{(\theta + h) - \theta} = \cos\theta$ and the gradient of the curve $\Rightarrow \frac{dy}{d\theta} = \cos\theta$ *	10alt	Use of $\frac{\sin(\theta+h) - \sin\theta}{(\theta+h) - \theta}$	B1	2.1
$\frac{\left[\sin\left(\theta + \frac{h}{2}\right)\cos\left(\frac{h}{2}\right) + \cos\left(\theta + \frac{h}{2}\right)\sin\left(\frac{h}{2}\right)\right] - \left[\sin\left(\theta + \frac{h}{2}\right)\cos\left(\frac{h}{2}\right) - \cos\left(\theta + \frac{h}{2}\right)\sin\left(\frac{h}{2}\right)\right]}{h}$ $= \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \times \cos\left(\theta + \frac{h}{2}\right)$ $M1$ 2.1 $Uses h \to 0, \frac{h}{2} \to 0 \text{ hence } \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \to 1 \text{ and } \cos\left(\theta + \frac{h}{2}\right) \to \cos\theta$ $A1^*$ 2.5 $Therefore the \liminf_{h \to 0} \frac{\sin(\theta + h) - \sin\theta}{(\theta + h) - \theta} = \cos\theta \text{ and the gradient of the curve } \Rightarrow \frac{dy}{d\theta} = \cos\theta *$		and uses the compound angle identity for $sin(A + B)$ and	M1	1.1b
$\frac{\overline{2}}{2}$ Uses $h \to 0, \frac{h}{2} \to 0$ hence $\frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \to 1$ and $\cos\left(\theta + \frac{h}{2}\right) \to \cos\theta$ Therefore the $\lim_{h \to 0} \frac{\sin(\theta + h) - \sin\theta}{(\theta + h) - \theta} = \cos\theta$ and the gradient of the chord \to gradient of the curve $\Rightarrow \frac{dy}{d\theta} = \cos\theta$ *			A1	1.1b
Therefore the $\liminf_{h\to 0} \frac{\sin(\theta+h) - \sin\theta}{(\theta+h) - \theta} = \cos\theta$ and the gradient of the chord \rightarrow gradient of the curve $\Rightarrow \frac{dy}{d\theta} = \cos\theta$ *		$=\frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}\times\cos\left(\theta+\frac{h}{2}\right)$	M1	2.1
		Therefore the $\operatorname{limit}_{h\to 0} \frac{\sin(\theta+h) - \sin\theta}{(\theta+h) - \theta} = \cos\theta$ and the gradient of	A1*	2.5
(5 marks		the chord \rightarrow gradient of the curve $\Rightarrow \frac{dy}{d\theta} = \cos\theta$ *		
			(5 n	narks)

A1*: Uses correct language to explain that $\frac{dy}{d\theta} = \cos \theta$. For this method they should use the (adapted) given statement $h \to 0, \frac{h}{2} \to 0$ hence $\frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \to 1$ with $\cos\left(\theta + \frac{h}{2}\right) \to \cos \theta$ meaning that the $\liminf_{h\to 0} \frac{\sin(\theta + h) - \sin \theta}{(\theta + h) - \theta} = \cos \theta$ and therefore the gradient of the chord \to gradient of the curve $\Rightarrow \frac{dy}{d\theta} = \cos \theta$

Question	Scheme	Marks	AOs	
11(a)	Sets $H = 0 \Longrightarrow 1.8 + 0.4d - 0.002d^2 = 0$	M1	3.4	
	Solves using an appropriate method, for example			
	$d = \frac{-0.4 \pm \sqrt{(0.4)^2 - 4(-0.002)(1.8)}}{2 \times -0.002}$	dM1	1.1b	
	Distance = awrt 204(m) only	Al	2.2a	
		(3)		
(b)	States the initial height of the arrow above the ground.	B1	3.4	
		(1)		
(c)	$1.8 + 0.4d - 0.002d^2 = -0.002(d^2 - 200d) + 1.8$	M1	1.1b	
	$= -0.002((d-100)^2 - 10000) + 1.8$	M1	1.1b	
	$=21.8-0.002(d-100)^2$	A1	1.1b	
		(3)		
(d)	(i) 22.1 metres	B1ft	3.4	
	(ii) 100 metres	B1ft	3.4	
		(2)		
		(9 n	narks)	
Notes:				
M1: Sets M1: Solv (<i>d</i> - A1: Awr	M1: Solves using formula, which if stated must be correct, by completing square (look for $(d-100)^2 = 10900 \Rightarrow d =$) or even allow answers coming from a graphical calculator			
	States it is the initial height of the arrow above the ground. Do not allow " it is the height of the archer"			
M1: For	Score for taking out a common factor of -0.002 from at least the d^2 and d terms For completing the square for their $(d^2 - 200d)$ term			
	$(.8-0.002(d-100)^2 \text{ or exact equivalent})$			
	For their '21.8+0.3' =22.1m For their 100m			

Question	Scheme	Marks	AOs
12 (a)	$N = aT^b \Longrightarrow \log_{10} N = \log_{10} a + \log_{10} T^b$	M1	2.1
	$\Rightarrow \log_{10} N = \log_{10} a + b \log_{10} T \text{ so } m = b \text{ and } c = \log_{10} a$	A1	1.1b
		(2)	
(b)	Uses the graph to find either <i>a</i> or <i>b</i> $a = 10^{\text{intercept}}$ or $b = \text{gradient}$	M1	3.1b
	Uses the graph to find both a and $b = 10^{\text{intercept}}$ and $b = \text{gradient}$	M1	1.1b
	Uses $T = 3$ in $N = aT^b$ with their a and b	M1	3.1b
	Number of microbes ≈800	A1	1.1b
		(4)	
(c)	$N = 1000000 \Longrightarrow \log_{10} N = 6$	M1	3.4
	We cannot 'extrapolate' the graph and assume that the model still holds	A1	3.5b
		(2)	
(d)	States that 'a' is the number of microbes 1 day after the start of the experiment	B1	3.2a
		(1)	
	(9 marks		narks)

Ques	Question 12 continued		
Notes	s:		
(a)			
M1:	Takes logs of both sides and shows the addition law		
M1:	Uses the power law, writes $\log_{10} N = \log_{10} a + b \log_{10} T$ and states $m = b$ and $c = \log_{10} a$		
(b)			
M1:	Uses the graph to find either <i>a</i> or <i>b</i> $a = 10^{\text{intercept}}$ or $b = \text{gradient}$. This would be implied by the sight of $b = 2.3$ or $a = 10^{1.8} \approx 63$		
M1:	Uses the graph to find both a and b $a = 10^{\text{intercept}}$ and $b = \text{gradient}$. This would be implied by the sight of $b = 2.3$ and $a = 10^{1.8} \approx 63$		
M1:	Uses $T = 3 \implies N = aT^b$ with their <i>a</i> and <i>b</i> . This is implied by an attempt at $63 \times 3^{2.3}$		
A1:	Accept a number of microbes that are approximately 800. Allow 800 ± 150 following correct work.		
	There is an alternative to this using a graphical approach.		
M1 :	Finds the value of $\log_{10} T$ from $T=3$. Accept as $T=3 \Longrightarrow \log_{10} T \approx 0.48$		
M1 :	Then using the line of best fit finds the value of $\log_{10} N$ from their "0.48"		
	Accept $\log_{10} N \approx 2.9$		
M1:	Finds the value of N from their value of $\log_{10} N \log_{10} N \approx 2.9 \Rightarrow N = 10^{'2.9'}$		
A1:	Accept a number of microbes that are approximately 800. Allow 800 ± 150 following correct work		
(c)			
M1	For using $N = 1000000$ and stating that $\log_{10} N = 6$		
A1:	Statement to the effect that "we only have information for values of log <i>N</i> between 1.8 and 4.5 so we cannot be certain that the relationship still holds". "We cannot extrapolate with any certainty, we could only interpolate" There is an alternative approach that uses the formula.		
	$\log\left(\frac{1000000}{10000000000000000000000000000$		
M1:	Use $N = 1000000$ in their $N = 63 \times T^{2.3} \Longrightarrow \log_{10} T = \frac{\log_{10} \left(\frac{1000000}{63}\right)}{2.3} \approx 1.83$.		
A1:	The reason would be similar to the main scheme as we only have $\log_{10} T$ values from 0 to 1.2. We cannot 'extrapolate' the graph and assume that the model still holds		
(d) B1:	Allow a numerical explanation $T = 1 \Rightarrow N = a l^b \Rightarrow N = a$ giving <i>a</i> is the value of <i>N</i> at $T = 1$		

Question	Scheme	Marks	AOs
13(a)	Attempts $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dx}}$	M1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{3}\sin 2t}{\sin t} \left(=2\sqrt{3}\cos t\right)$	A1	1.1b
		(2)	
(b)	Substitutes $t = \frac{2\pi}{3}$ in $\frac{dy}{dx} = \frac{\sqrt{3}\sin 2t}{\sin t} = (-\sqrt{3})$	M1	2.1
	Uses gradient of normal = $-\frac{1}{\frac{dy}{dx}} = \left(\frac{1}{\sqrt{3}}\right)$	M1	2.1
	Coordinates of $P = \left(-1, -\frac{\sqrt{3}}{2}\right)$	B1	1.1b
	Correct form of normal $y + \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}}(x+1)$	M1	2.1
	Completes proof $\Rightarrow 2x - 2\sqrt{3}y - 1 = 0$ *	A1*	1.1b
		(5)	
(c)	Substitutes $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$ into $2x - 2\sqrt{3}y - 1 = 0$	M1	3.1a
	Uses the identity $\cos 2t = 2\cos^2 t - 1$ to produce a quadratic in $\cos t$	M1	3.1a
	$\Rightarrow 12\cos^2 t - 4\cos t - 5 = 0$	A1	1.1b
	Finds $\cos t = \frac{5}{6}, \frac{1}{2}$	M1	2.4
	Substitutes their $\cos t = \frac{5}{6}$ into $x = 2\cos t$, $y = \sqrt{3}\cos 2t$,	M1	1.1b
	$Q = \left(\frac{5}{3}, \frac{7}{18}\sqrt{3}\right)$	A1	1.1b
		(6)	
	(13 marks)		narks)

Quest	tion 13 continued
Notes	:
(a)	
M1:	Attempts $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ and achieves a form $k \frac{\sin 2t}{\sin t}$ Alternatively candidates may apply the
	double angle identity for $\cos 2t$ and achieve a form $k \frac{\sin t \cos t}{\sin t}$
A1:	Scored for a correct answer, either $\frac{\sqrt{3}\sin 2t}{\sin t}$ or $2\sqrt{3}\cos t$
(b)	
M1:	For substituting $t = \frac{2\pi}{3}$ in their $\frac{dy}{dx}$ which must be in terms of t
M1:	Uses the gradient of the normal is the negative reciprocal of the value of $\frac{dy}{dx}$. This may be seen in the equation of <i>l</i> .
B1:	States or uses (in their tangent or normal) that $P = \left(-1, -\frac{\sqrt{3}}{2}\right)$
M1:	Uses their numerical value of $-1/\frac{dy}{dx}$ with their $\left(-1, -\frac{\sqrt{3}}{2}\right)$ to form an equation of the
A1*:	normal at <i>P</i> This is a proof and all aspects need to be correct. Correct answer only $2x - 2\sqrt{3}y - 1 = 0$
(c)	
M1:	For substituting $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$ into $2x - 2\sqrt{3}y - 1 = 0$ to produce an equation in <i>t</i> . Alternatively candidates could use $\cos 2t = 2\cos^2 t - 1$ to set up an equation of the form $y = Ax^2 + B$.
M1:	Uses the identity $\cos 2t = 2\cos^2 t - 1$ to produce a quadratic equation in $\cos t$
	In the alternative method it is for combining their $y = Ax^2 + B$ with $2x - 2\sqrt{3}y - 1 = 0$ to get an equation in just one variable
A1:	For the correct quadratic equation $12\cos^2 t - 4\cos t - 5 = 0$
	Alternatively the equations in x and y are $3x^2 - 2x - 5 = 0$ $12\sqrt{3}y^2 + 4y - 7\sqrt{3} = 0$
M1:	Solves the quadratic equation in $\cos t$ (or x or y) and rejects the value corresponding to P.
M1:	Substitutes their $\cos t = \frac{5}{6}$ or their $t = \arccos\left(\frac{5}{6}\right)$ in $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$
	If a value of x or y has been found it is for finding the other coordinate.
A1:	$Q = \left(\frac{5}{3}, \frac{7}{18}\sqrt{3}\right)$. Allow $x = \frac{5}{3}, y = \frac{7}{18}\sqrt{3}$ but do not allow decimal equivalents.

Question	Scheme	Marks	AOs
14(a)	Uses or implies $h = 0.5$	B1	1.1b
	For correct form of the trapezium rule =	M1	1.1b
	$\frac{0.5}{2} \{3 + 2.2958 + 2(2.3041 + 1.9242 + 1.9089)\} = 4.393$	A1	1.1b
		(3)	
(b)	 Any valid statement reason, for example Increase the number of strips Decrease the width of the strips Use more trapezia 	B1	2.4
		(1)	
(c)	For integration by parts on $\int x^2 \ln x dx$	M1	2.1
	$=\frac{x^3}{3}\ln x - \int \frac{x^2}{3} \mathrm{d}x$	A1	1.1b
	$\int -2x + 5 \mathrm{d}x = -x^2 + 5x (+c)$	B1	1.1b
	All integration attempted and limits used		
	Area of $S = \int_{1}^{3} \frac{x^2 \ln x}{3} - 2x + 5 dx = \left[\frac{x^3}{9} \ln x - \frac{x^3}{27} - x^2 + 5x\right]_{x=1}^{x=3}$	M1	2.1
	Uses correct ln laws, simplifies and writes in required form	M1	2.1
	Area of $S = \frac{28}{27} + \ln 27$ (a = 28, b = 27, c = 27)	A1	1.1b
		(6)	
	(10 marks		narks)

Question 14 continued

Nota	
Notes	5;
(a)	
B1:	States or uses the strip width $h = 0.5$. This can be implied by the sight of $\frac{0.5}{2} \{\}$ in the
	trapezium rule
M1:	For the correct form of the bracket in the trapezium rule. Must be y values rather than x values $\{$ first y value + last y value + 2×(sum of other y values) $\}$
A1:	4.393
(b)	
B1:	See scheme
(c)	
M1:	Uses integration by parts the right way around.
	Look for $\int x^2 \ln x dx = Ax^3 \ln x - \int Bx^2 dx$
A1:	$\frac{x^3}{3}\ln x - \int \frac{x^2}{3} \mathrm{d}x$
B1:	Integrates the $-2x+5$ term correctly $= -x^2 + 5x$
M1:	All integration completed and limits used
M1:	Simplifies using ln law(s) to a form $\frac{a}{b} + \ln c$
A1:	Correct answer only $\frac{28}{27} + \ln 27$

Questi	on Scheme	Marks	AOs	
15(a)	Attempts to differentiate using the quotient rule or otherwise	M1	2.1	
	$f'(x) = \frac{e^{\sqrt{2}x-1} \times 8\cos 2x - 4\sin 2x \times \sqrt{2}e^{\sqrt{2}x-1}}{\left(e^{\sqrt{2}x-1}\right)^2}$	A1	1.1b	
	Sets $f'(x) = 0$ and divides/ factorises out the $e^{\sqrt{2x-1}}$ terms	M1	2.1	
	Proceeds via $\frac{\sin 2x}{\cos 2x} = \frac{8}{4\sqrt{2}}$ to $\Rightarrow \tan 2x = \sqrt{2}^*$	A1*	1.1b	
		(4)		
(b)	(i) Solves $\tan 4x = \sqrt{2}$ and attempts to find the 2 nd solution	M1	3.1a	
	x = 1.02	A1	1.1b	
	(ii) Solves $\tan 2x = \sqrt{2}$ and attempts to find the 1 st solution	M1	3.1a	
	x = 0.478	A1	1.1b	
		(4)		
		(8 n	1arks)	
Notes:				
A1:] M1: 7	 Attempts to differentiate by using the quotient rule with u = 4 sin 2x and v = e^{√2x-1} or alternatively uses the product rule with u = 4 sin 2x and v = e^{1-√2x} For achieving a correct f'(x). For the product rule f'(x) = e^{1-√2x} × 8 cos 2x + 4 sin 2x × -√2e^{1-√2x} 			
-				
M1: 5	olves $\tan 4x = \sqrt{2}$ attempts to find the 2 nd solution. Look for $x = \frac{\pi + \arctan{4}}{4}$	lves $\tan 4x = \sqrt{2}$ attempts to find the 2 nd solution. Look for $x = \frac{\pi + \arctan \sqrt{2}}{4}$		
A1: //	Iternatively finds the 2 nd solution of $\tan 2x = \sqrt{2}$ and attempts to divide by 2 Illow awrt $x = 1.02$. The correct answer, with no incorrect working scores both marks			
M1: 5	lves $\tan 2x = \sqrt{2}$ attempts to find the 1 st solution. Look for $x = \frac{\arctan \sqrt{2}}{2}$			
	allow awrt $x = 0.478$. The correct answer, with no incorrect working score		rks	