Question 1

(i)	$\begin{aligned} & \bar{t}=112.8, \bar{v}=0.6 \\ & b=\frac{S v t}{S v v}=\frac{405.2-3 \times 564 / 5}{2.20-3^{2} / 5}=\frac{66.8}{0.4}=167 \\ & \text { OR } \quad b=\frac{405.2 / 5-0.6 \times 112.8}{2.20 / 5-0.6^{2}}=\frac{13.36}{0.08}=167 \end{aligned}$ hence least squares regression line is: $\begin{array}{ll} & t-\bar{t}=b(v-\bar{v}) \\ \Rightarrow & t-112.8=167(v-0.6) \\ \Rightarrow & t=167 v+12.6 \end{array}$	B1 for \bar{t} and \bar{v} used (SOI) M1 for attempt at gradient (b) A1 for 167 CAO M1 for equation of line A1 FT	5
(ii)	(A) For 0.5 litres, predicted time $=$ $=167 \times 0.5+12.6=96.1$ seconds (B) For 1.5 litres, predicted time $=$ $=167 \times 1.5+12.6=263.1 \text { seconds }$ Any valid relevant comment relating to each prediction such as eg: 'First prediction is fairly reliable as it is interpolation and the data is a good fit' 'Second prediction is less certain as it is an extrapolation'	M1 for at least one prediction attempted A1 for both answers (FT their equation if $b>0$) NB for reading predictions off the graph only award A1 if accurate to nearest whole number E1 (first prediction) E1 (second prediction)	4
(iii)	The v-coefficient is the number of additional seconds required for each extra litre of water	E1 for indication of rate wrt v E1 dep for specifying ito units	2
(iv)	```\(v=0.8 \Rightarrow\) predicted \(t=167 \times 0.8+12.6=146.2\) Residual \(=156-146.2=9.8\) \(v=1.0 \Rightarrow\) predicted \(t=167 \times 1.0+12.6=179.6\) Residual \(=172-179.6=-7.6\)```	M1 for either prediction M1 for either subtraction A1 CAO for absolute value of both residuals B1 for both signs correct.	4
(v)	The residuals can be measured by finding the vertical distance between the plotted point and the regression line. The sign will be negative if the point is below the regression line (and positive if above).	E1 for distance E1 for vertical E1 for sign	3
			18

Question 2

$\begin{aligned} & \text { (a) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & X \sim \mathrm{~N}(28,16) \\ & \mathrm{P}(24< \\ & \quad X<33)=\mathrm{P}\left(\frac{24-28}{4}<Z<\frac{33-28}{4}\right) \\ & \\ & =\mathrm{P}(-1<Z<1.25) \\ & \\ & =\Phi(1.25)-(1-\Phi(1)) \\ & \\ & =0.8944-(1-0.8413) \\ & \\ & =0.8944-0.1587 \\ & \end{aligned}$	M1 for standardizing A1 for 1.25 and -1 M1 for prob. with tables and correct structure A1 CAO (min 3 s.f., to include use of difference column)	4
(ii)	$\begin{aligned} & 25000 \times 0.7357 \times 0.1=£ 1839 \\ & 25000 \times 0.1587 \times 0.05=£ 198 \\ & \text { Total }=£ 1839+£ 198=£ 2037 \end{aligned}$	M1 for either product, (with or without price) M1 for sum of both products with price A1 CAO awrt $£ 2040$	3
(iii)	$X \sim \mathrm{~N}(k, 16)$ From tables $\Phi^{-1}(0.95)=1.645$ $\begin{aligned} & \frac{33-k}{4}=1.645 \\ & 33-k=1.645 \times 4 \\ & k=33-6.58 \\ & k=26.42 \text { (4 s.f.) or } 26.4 \text { (to } 3 \text { s.f.) } \end{aligned}$	B1 for ± 1.645 seen M1 for correct equation in k with positive z-value A1 CAO	3
(b) (i)	$\mathrm{H}_{0}: \mu=0.155 ; \quad \mathrm{H}_{1}: \mu>0.155$ Where μ denotes the mean weight in kilograms of the population of onions of the new variety	B1 for both correct \& ito μ B1 for definition of μ	2
(ii)	$\begin{aligned} \text { Mean weight } & =4.77 / 25=0.1908 \\ \text { Test statistic } & =\frac{0.1908-0.155}{\sqrt{0.005} / \sqrt{25}}=\frac{0.0358}{0.01414} \\ & =2.531 \end{aligned}$ 1\% level 1-tailed critical value of $z=2.326$ $2.531>2.236$ so significant. There is sufficient evidence to reject H_{0} It is reasonable to conclude that the new variety has a higher mean weight.	B1 M1 must include $\sqrt{ } 25$ A1FT B1 for 2.326 M1 For sensible comparison leading to a conclusion A1 for correct, consistent conclusion in words and in context	6
			18

Question 3

(i)	$\text { Mean }=\frac{\Sigma x f}{n}=\frac{0+20+12+3}{80}=\frac{35}{80}(=0.4375)$	B1 for mean NB answer given	1
(ii)	$\text { Variance }=0.6907^{2}=0.4771$ So Poisson distribution may be appropriate, since mean is close to variance	B1 for variance E1dep on squaring s	2
(iii)	$\begin{gathered} P(X=1)=e^{-0.4375} \frac{0.4375^{1}}{1!} \\ =0.282(3 \text { s.f. }) \end{gathered}$ Either: Thus the expected number of 1's is 22.6 which is reasonably close to the observed value of 20. Or: This probability compares reasonably well with the relative frequency 0.25	M1 for probability calc. MO for tables unless interpolated (0.2813) A1 B1 for expectation of 22.6 or r.f. of 0.25 E1 for comparison	4
(iv)	$\lambda=8 \times 0.4375=3.5$ Using tables: $\mathrm{P}(X \geq 12)=1-\mathrm{P}(X \leq 11)$ $=1-0.9997=0.0003$	B1 for mean (SOI) M1 for using tables to find 1 $-\mathrm{P}(X \leq 11)$ A1 FT	3
(v)	The probability of at least 12 free repairs is very low, so the model is not appropriate. This is probably because the mean number of free repairs in the launderette will be much higher since the machines will get much more use than usual.	E1 for 'at least 12' E1 for very low E1	3
(vi)	(A) $\begin{aligned} & \lambda=0.4375+0.15=0.5875 \\ & \mathrm{P}(X=3)=\mathrm{e}^{-0.5875} \frac{0.5875^{3}}{3!} \\ & =0.0188 \text { (3 s.f.) } \end{aligned}$ $\text { (B) } \begin{aligned} \mathrm{P}(\text { Drier needs } 1)=\mathrm{e}^{-0.15} & \frac{0.15^{1}}{1!}=0.129 \\ \mathrm{P}(\text { Each needs just } 1) & =0.282 \times 0.129 \\ & =0.036 \end{aligned}$	B1 for mean (SOI) M1 A1 B1 for 0.129 (SOI) B1FT for 0.036	3 2
			18

Question 4

