4767

Question 1

(i)			
(1)	$\bar{t} = 112.8, \ \bar{v} = 0.6$	B1 for \bar{t} and \bar{v} used (SOI)	
	$b = \frac{Svt}{Svv} = \frac{405.2 - 3 \times 564/5}{2.20 - 3^2/5} = \frac{66.8}{0.4} = 167$ OR $b = \frac{405.2/5 - 0.6 \times 112.8}{2.20/5 - 0.6^2} = \frac{13.36}{0.08} = 167$	M1 for attempt at gradient (<i>b</i>) A1 for 167 CAO	
	$2.20/5 - 0.6^2 \qquad 0.08 \qquad -107$	M1 for equation of line	
	hence least squares regression line is: $t - \overline{t} = b(v - \overline{v})$ $\Rightarrow t - 112.8 = 167(v - 0.6)$	A1 FT	
	$\Rightarrow t = 167v + 12.6$		5
(ii)	(A) For 0.5 litres, predicted time = = $167 \times 0.5 + 12.6 = 96.1$ seconds	M1 for at least one prediction attempted	
	(B) For 1.5 litres, predicted time = = $167 \times 1.5 + 12.6 = 263.1$ seconds	A1 for both answers (FT their equation if <i>b</i> >0) NB for reading predictions off	
	Any valid relevant comment relating to each prediction such as eg: 'First prediction is fairly reliable as it is interpolation	the graph only award A1 if accurate to nearest whole number	
	and the data is a good fit' 'Second prediction is less certain as it is an extrapolation'	E1 (first prediction) E1 (second prediction)	4
(iii)	The <i>v</i> -coefficient is the number of additional seconds required for each extra litre of water	E1 for indication of rate wrt <i>v</i> E1 <i>dep</i> for specifying ito units	2
(iv)	$v = 0.8 \Rightarrow$ predicted $t = 167 \times 0.8 + 12.6 = 146.2$ Residual = 156 - 146.2 = 9.8 $v = 1.0 \Rightarrow$	 M1 for either prediction M1 for either subtraction A1 CAO for absolute value of both residuals B1 for both signs correct. 	
	predicted $t = 167 \times 1.0 + 12.6 = 179.6$ Residual = $172 - 179.6 = -7.6$		4
(v)	The residuals can be measured by finding the vertical distance between the plotted point and the regression line. The sign will be negative if the point is below the regression line (and positive if above)	E1 for distance E1 for vertical E1 for sign	3
	the regression line (and positive if above).		
			18

Ques	stion 2					
(a)						
(i)	$P(24 < X < 33) = P\left(\frac{24 - 28}{4} < Z < \frac{33 - 28}{4}\right)$	M1 for standardizing				
	= P(-1 < Z < 1.25)	A1 for 1. 25 and -1				
	$= \Phi(1.25) - (1 - \Phi(1))$	M1 for prob. with tables				
	= 0.8944 - (1 - 0.8413)	and correct structure A1 CAO (min 3 s.f., to				
	= 0.8944 - 0.1587	include use of difference				
	= 0.7357 (4 s.f.) <i>or</i> 0.736 (to 3 s.f.)	column)	4			
(ii)	25000 ×0.7357 ×0.1 = £1839	M1 for either product, (with				
	25000 ×0.1587 ×0.05 = £198	or without price) M1 for sum of both				
	Total = £1839 + £198 = £2037	products with price				
		A1 CAO awrt £2040	3			
(iii)	$X \sim N(k, 16)$	B1 for ±1.645 seen				
()	From tables $\Phi^{-1}(0.95) = 1.645$					
	$\frac{33-k}{4} = 1.645$	M1 for correct equation in k				
	4	with positive z-value				
	$33 - k = 1.645 \times 4$					
	k = 33 - 6.58	A1 CAO				
	<i>k</i> = 26.42 (4 s.f.) <i>or</i> 26.4 (to 3 s.f.)		3			
(b)		B1 for both correct & ito μ				
(i)	$H_0: \mu = 0.155; H_1: \mu > 0.155$					
	Where μ denotes the mean weight in kilograms of the	B1 for definition of μ	2			
	population of onions of the new variety		2			
(ii)	Mean weight = 4.77/25 = 0.1908	B1				
	0.1908 - 0.155 - 0.0358	M1 must include $\sqrt{25}$				
	Test statistic = $\frac{100000}{\sqrt{0.005}/\sqrt{25}} = \frac{100000}{0.01414}$	A1FT				
	= 2.531	AIFT				
	1% level 1-tailed critical value of $z = 2.326$ 2.531 > 2.236 so significant.	B1 for 2.326 M1 For sensible				
	There is sufficient evidence to reject H_0	comparison leading to a				
		conclusion				
	It is reasonable to conclude that the new variety has a	A1 for correct, consistent				
	higher mean weight.	conclusion in words and in				
		context	6			
			18			

Mark Scheme

4767

Question 3

	$\Sigma rf = 0 + 20 + 12 + 2 = 25$	B1 for mean	
(i)	Mean = $\frac{\Sigma xf}{n} = \frac{0+20+12+3}{80} = \frac{35}{80}$ (= 0.4375)	NB answer given	1
	Variance = $0.6907^2 = 0.4771$	B1 for variance	
(ii)	So Poisson distribution may be appropriate, since mean is close to variance	E1dep on squaring s	2
(iii)	$P(X = 1) = e^{-0.4375} \frac{0.4375^{1}}{1!}$ = 0.282 (3 s.f.)	M1 for probability calc. M0 for tables unless interpolated (0.2813) A1	
	<i>Either:</i> Thus the expected number of 1's is 22.6 which is reasonably close to the observed value of 20. <i>Or</i> : This probability compares reasonably well with the relative frequency 0.25	B1 for expectation of 22.6 or r.f. of 0.25 E1 for comparison	4
(iv)	$\lambda = 8 \times 0.4375 = 3.5$	B1 for mean (SOI)	
	Using tables: $P(X \ge 12) = 1 - P(X \le 11)$	M1 for using tables to find 1	
	= 1 - 0.9997 = 0.0003	$- P(X \le 11)$ A1 FT	
			3
(v)	The probability of at least 12 free repairs is very low, so the model is not appropriate. This is probably because the mean number of free repairs in the launderette will be much higher since the machines will get much more use than usual.	E1 for 'at least 12' E1 for very low E1	3
(vi)	(A) $\lambda = 0.4375 + 0.15 = 0.5875$	B1 for mean (SOI)	
	$P(X=3) = e^{-0.5875} \frac{0.5875^3}{3!}$ = 0.0188 (3 s.f.)	M1 A1	3
	(B) P(Drier needs 1) = $e^{-0.15} \frac{0.15^1}{1!} = 0.129$	B1 for 0.129 (SOI)	
	$P(Each needs just 1) = 0.282 \times 0.129$	B1FT for 0.036	
	= 0.036		2
			18

Question 4

(i)	location;	ociation betwassociation be				B1 in context	1
	Ob	served -	Home	ocation			
			City	Non-city			
	Ambition	Good results	102	147			
		Other	75	156		M1 A1 for attempt at	
					1	expected values	
	Expected			ocation			
			City 91.82	Non-city 157.18			
	Ambition					M4 for valid attainent at (O	
		Other	85.18	145.82		M1 for valid attempt at (O- E) ² /E	
	Contrib	ution to the	Home	ocation			
	test	statistic	City	Non-city			
	Amabitian	Good results	1.129	0.659			
	Ambition	Other	1.217	0.711			
						A1CAO for χ^2	
				B1 for 1 dof SOI	4		
	$X^2 = 3.716$ Refer to χ_1^2 Critical value at 5% level = 3.841 Result is not significant There is insufficient evidence to conclude that there is				B1 CAO for cv		
					B1 <i>dep on attempt at cv</i> E1 conclusion in context		
					E I conclusion in context		
						4	
	any association between home location and ambition.				-		
	NB if $H_0 H_1$ reversed, or 'correlation' mentioned, do not award first B1or final B1 or final E1						
(ii) (A)	Expected Country, Results = 249 * 156 / 480 = 80.93 Expected Country, Other = 231 * 156 / 480 = 75.08					B1 B1	2
(<i>B</i>)	Critical value at 5% level = 5.991			B1 for 2 dof SOI			
				B1 CAO for cv			
	Result is significant There is evidence to conclude that there is association between home location and ambition.				E1 for conclusion in context		
						3	
(<i>C</i>)	C) 'Country' students are much less likely than city or town to have 'Results' as their main ambition. Low contributions show that city and town students do not			E1 for correct obs ⁿ for			
				'Country' E1 for additional correct			
	appear to differ markedly in their ambitions.				observation (must refer	2	
(iii)	Conclusion in (i) is valid if only actogorizing home			to contributions)			
(11)	Conclusion in (i) is valid if only categorizing home location into city and non-city. However if non-city is						
	subdivided into town and country this additional			E1			
	subdivision gives the data more precision and allows the relationship in part (ii) (<i>C</i>) to be revealed.				llows		2
						18	