| Centre Number | | | Candidate Number | | | |---------------------|--|--|------------------|--|--| | Surname | | | | | | | Other Names | | | | | | | Candidate Signature | | | | | | General Certificate of Education Advanced Subsidiary Examination June 2009 # **Chemistry** CHEM1 ### **Unit 1** Foundation Chemistry Wednesday 3 June 2009 9.00 am to 10.15 am ### For this paper you must have: - the Periodic Table/Data Sheet, provided as an insert (enclosed) - a calculator. #### Time allowed • 1 hour 15 minutes #### Instructions - Use black ink or black ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions. - You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked. - All working must be shown. - Do all rough work in this book. Cross through any work that you do not want to be marked. - The Periodic Table/Data Sheet is provided as an insert. #### Information - The marks for questions are shown in brackets. - The maximum mark for this paper is 70. - Your answers to the questions in Section B should be written in continuous prose, where appropriate. - You will be marked on your ability to: - use good English - organise information clearly - use specialist vocabulary where appropriate. ### **Advice** You are advised to spend about 50 minutes on Section A and about 25 minutes on Section B. ### **SECTION A** | | | | Answer all qu | estions in the | e spaces provide | ed. | | | | | |---|-----|-----------------|--|---|------------------|-----------------|------------|--|--|--| | 1 | (a) | Com | aplete the electronic confi | guration for | the sodium ion, | Na ⁺ | | | | | | | | ls ² | | | | | | | | | | | | | | | | | (1 mark) | | | | | 1 | (b) | (i) | | Write an equation, including state symbols, to represent the process for which the energy change is the second ionisation energy of sodium. | | | | | | | | | | | | | | | (2 marks) | | | | | 1 | (b) | (ii) | | Explain why the second ionisation energy of sodium is greater than the second ionisation energy of magnesium. | ••••• | (3 marks) | | | | | 1 | (b) | (iii) | An element X in Period ionisation energies. | 3 of the Per | iodic Table has | the following | successive | | | | | | | | | First | Second | Third | Fourth | | | | | | | | Ionisation energies / kJ mol ⁻¹ | 577 | 1820 | 2740 | 11600 | | | | | | | | Deduce the identity of e | element X. | | | | | | | | | | | | | | | (1 mark) | | | | | | | | | | | | (1 mark) | 1 | (c) | State and explain the trend in atomic radius of the Period 3 elements from sodium to chlorine. | |---|-----|--| | | | Trend | | | | Explanation | | | | | | | | (3 marks) | | 1 | (d) | Explain why sodium has a lower melting point than magnesium. | | | | | | | | | | | | | | | | (3 marks) | | 1 | (e) | Sodium reacts with ammonia to form the compound $NaNH_2$ which contains the NH_2^- ion. Draw the shape of the NH_2^- ion, including any lone pairs of electrons. Name the shape made by the three atoms in the NH_2^- ion. | | | | Shape of NH ₂ | Name of shape | | 1 | (f) | In terms of its electronic configuration, give one reason why neon does not form compounds with sodium. | | | | (1 mark) | **Turn over** ▶ 16 | 2 | | | able conditions magnesium will react with dilute nitric acid according to the equation. | |---|-----|-------|--| | | | | $Mg(s) + 2HNO_3(aq) \longrightarrow Mg(NO_3)_2(aq) + H_2(g)$ | | | | | g sample of magnesium was added to 36.4 cm ³ of 0.265 mol dm ⁻³ nitric acid. The n excess. | | 2 | (a) | (i) | Calculate the amount, in moles, of magnesium in the 0.0732 g sample. | | | | | | | | | | (1 mark) | | 2 | (a) | (ii) | Hence calculate the amount, in moles, of nitric acid needed to react completely with this sample of magnesium. | | | | | | | | | | (1 mark) | | 2 | (a) | (iii) | Calculate the amount, in moles, of nitric acid originally added to this sample of magnesium. | | | | | | | | | | (1 mark) | (iv) Hence calculate the amount, in moles, of nitric acid that remains unreacted. | ı | Ш | Ш | Ш | П | |---|--------|---|---|---| | l | Ш | Ш | Ш | Ш | | l | Ш | Ш | Ш | Ш | | l | Ш | Ш | Ш | Ш | | ٠ |
~- | | | " | | | u | 4 | | | (1 mark) **10** | 2 | (b) | In a second experiment, 0.512 mol of hydrogen gas was produced when another sample of magnesium reacted with dilute nitric acid. Calculate the volume that this gas would occupy at 298 K and 96 kPa. Include units in your final answer. (The gas constant $R = 8.31 \mathrm{JK}^{-1}\mathrm{mol}^{-1}$) | |---|-----|--| (3 marks) | | 2 | (c) | Concentrated nitric acid reacts with magnesium to form an oxide of nitrogen which contains 30.4% by mass of nitrogen. | | | | Calculate the empirical formula of this oxide of nitrogen. Show your working. | (3 marks) | Turn over for the next question **Turn over** ▶ **3** (a) Two organic compounds with similar relative molecular masses are shown below. Ethanol Propane **3** (a) State the type of bond present between the C and H atoms in both of these molecules. Explain how this type of bond is formed. Type of bond Explanation (2 marks) **3** (a) State the strongest type of intermolecular force present in each compound. Liquid ethanol Liquid propane (2 marks) Ethanol dissolves in water. Draw a diagram to show how one molecule of ethanol **3** (b) interacts with one molecule of water in the solution. Include partial charges and all lone pairs. The ethanol molecule has been drawn for you. $$\begin{array}{cccc} H & H \\ | & | \\ H - C - C - O \\ | & | \\ H & H \end{array}$$ (3 marks) | 3 | (c) | Etha | nol was the fuel used in the first mass-produced car, the Model T Ford. | |---|-----|-------|--| | 3 | (c) | (i) | Write an equation which shows how ethanol burns completely in air to form carbon dioxide and water as the only products. | | | | | (1 mark) | | 3 | (c) | (ii) | Suggest one environmental problem caused by incomplete combustion of ethanol in a car engine. | | | | | | | | | | (1 mark) | | 3 | (c) | (iii) | Suggest one economic problem for the car user caused by incomplete combustion of ethanol in the car engine. | | | | | | | | | | (1 mark) | | 3 | (d) | | ane is also used as a fuel, although sometimes it can be contaminated with ar-containing impurities. When this propane burns, these impurities form sulfur ide. | | 3 | (d) | (i) | State how the sulfur dioxide can be removed from the waste gases produced when this propane is burned on a large scale in industry. Suggest a reason why the method you have stated may not be 100% efficient. | | | | | How removed | | | | | | | | | | Reason for less than 100% efficiency | | | | | (2 marks) | | 3 | (d) | (ii) | Although propane has a boiling point of -42°C , it is usually supplied as a liquid for use in camping stoves. Suggest why it is supplied as a liquid. | | | | | | | | | | (1 mark) | Turn over ▶ 13 | 4 | Hex | ane is | a member of the homologous series of alkanes. | | | | | | | |---|-----|--------|--|--------|--|--|--|--|--| | 4 | (a) | State | State two characteristics of a <i>homologous series</i> . | | | | | | | | | | Cha | Characteristic 1 | | | | | | | | | | ••••• | | | | | | | | | | | Cha | racteristic 2 | ••••• | · · | ıarks) | | | | | | | 4 | (b) | (i) | Hexane can be converted into 2,2-dichlorohexane. | | | | | | | | | | | Draw the displayed formula of 2,2-dichlorohexane and deduce its empirical formula. | | | | | | | | | | | Displayed formula | Empirical formula | (2 n | narks) | | | | | | | 4 | (b) | (ii) | Explain why 2,2-dichloro-3-methylpentane is a structural isomer of 2,2-dichlorohexane. | (2 | | | | | | | | | | | (Z m) | iarks) | 4 (c) | A reaction | of hexane v | with chlorine | is shown | by the | equation | below. | |--------------|------------|-------------|---------------|----------|--------|----------|--------| |--------------|------------|-------------|---------------|----------|--------|----------|--------| $$C_6H_{14} + 2Cl_2 \longrightarrow C_6H_{12}Cl_2 + 2HCl$$ | Calculate the percentage atom | economy for the fo | ormation of C ₆ H ₁₂ Cl ₂ | 2 in this reaction. | |-------------------------------|--------------------|--|---------------------| | | | | | |
 |
 | | |------|------|--| | | | | (2 marks) | 1 | (4) | The boiling | naints of | coma etroi | ight chain | alkanac | are chown | halow | |---|-----|-------------|-----------|------------|-------------|---------|-----------|--------| | 4 | (u) | The boiling | pomis or | some sua | igiii-chain | arkanes | are shown | Delow. | | Alkane | C ₄ H ₁₀ | C ₅ H ₁₂ | C ₆ H ₁₄ | |--------------------|--------------------------------|--------------------------------|--------------------------------| | Boiling point / °C | -0.5 | 36.3 | 68.7 | | 4 | (d) | (i) | Explain | the trend | in the | ese boiling | points | |---|-----|-----|---------|-----------|---------|-------------|--------| | - | (u) | (1) | Explain | me nena | III UIC | se builing | pomis | |
 |
 | | |------|-----------|--| |
 |
••••• | | | | | | (2 marks) | 4 | (d) | (ii) | Name a process | which can | be used to | separate | C_5H_{12} 1 | from C_6H_{14} | |---|-----|------|----------------|-----------|------------|----------|---------------|------------------| |---|-----|------|----------------|-----------|------------|----------|---------------|------------------| |
• • • • • • • • • • | • • • • | |-------------------------|---------| | | • . | (1 mark) 11 Turn over ▶ # **SECTION B** | | Answer Question 5 in the spaces provided. | | | | | |---|---|------|--|--|--| | 5 | (a) | (i) | Define the term relative atomic mass (A_r) of an element. | (2 marks) | | | | 5 | (a) | (ii) | A sample of the metal silver has the relative atomic mass of 107.9 and exists as two isotopes. In this sample, 54.0% of the silver atoms are one isotope with a relative mass of 107.1 | | | | | | | Calculate the relative mass of the other silver isotope. | | | | | | | State why the isotopes of silver have identical chemical properties. | (4 marks) | 5 | (b) | The isotopes of silver, when vaporised, can be separated in a mass spectrometer. | |---|-----|--| | | | Name the three processes that occur in a mass spectrometer before the vaporised isotopes can be detected. | | | | State how each process is achieved. | (6 marks) | | | | (o mana) | Question 5 continues on the next page **Turn over** ▶ | 5 | (c) | State the type of bonding involved in silver. | |---|-----|--| | | | Draw a diagram to show how the particles are arranged in a silver lattice and show the charges on the particles. | (3 marks) | 5 | (d) | Silver reacts with fluorine to form silver fluoride (AgF). | |---|-----|---| | | | Silver fluoride has a high melting point and has a structure similar to that of sodium chloride. | | | | State the type of bonding involved in silver fluoride. | | | | Draw a diagram to show how the particles are arranged in a silver fluoride lattice and show the charges on the particles. | | | | Explain why the melting point of silver fluoride is high. | (5 marks) | END OF QUESTIONS **20** # **GCE Chemistry Data Sheet** **Table 1**Infrared absorption data | Bond | Wavenumber
/cm ⁻¹ | |-------------------|---------------------------------| | N-H (amines) | 3300-3500 | | O-H
(alcohols) | 3230-3550 | | C-H | 2850 - 3300 | | O-H (acids) | 2500-3000 | | $C \equiv N$ | 2220 - 2260 | | C = O | 1680 - 1750 | | C = C | 1620 - 1680 | | C - O | 1000 - 1300 | | C - C | 750-1100 | **Table 2** ¹H n.m.r. chemical shift data | Type of proton | δ/ppm | |---|-----------| | ROH | 0.5 - 5.0 | | RCH_3 | 0.7 - 1.2 | | RNH_2 | 1.0 - 4.5 | | R_2CH_2 | 1.2 - 1.4 | | R_3CH | 1.4 - 1.6 | | R-C-C-

 | 2.1-2.6 | | R-O-C-
H | 3.1-3.9 | | RCH ₂ Cl or Br | 3.1 - 4.2 | | $\begin{array}{ccc} R-C-O-C-\\ \parallel & \parallel \\ O & \mathbf{H} \end{array}$ | 3.7-4.1 | | Ŗ Ħ | | | C = C | 4.5 - 6.0 | | R-C H | 9.0-10.0 | | R-C $O-H$ | 10.0-12.0 | **Table 3** ¹³C n.m.r. chemical shift data | Type of carbon | δ/ppm | |--|-----------| | $-\overset{ }{\mathbf{C}}-\overset{ }{\mathbf{C}}-$ | 5-40 | | $R - \stackrel{\mid}{C} - Cl$ or Br | 10-70 | | $\begin{array}{c c} R-C-\overset{ }{C}-\\ 0 \end{array}$ | 20-50 | | $\mathbf{R} - \mathbf{C} - \mathbf{N}$ | 25-60 | | -C-O- alcohols, ethers or esters | 50-90 | | $\mathbf{C} = \mathbf{C}$ | 90-150 | | $R-C \equiv N$ | 110-125 | | | 110-160 | | R-C- esters or acids | 160-185 | | R-C- aldehydes | 190 – 220 | # **The Periodic Table of the Elements** | 1 | 2 | | | | | | | | | | | 3 | 4 | 5 | 6 | 7 | 0 | | |--------------------------------------|------------------------------------|---|---|--------------------------------------|--|-------------------------------------|-------------------------------------|--|--|---|-------------------------------|---|----------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|---|--| | (1) | (2) | | | Key | | | 1.0
H
hydrogen | | | | | (13) | (14) | (15) | (16) | (17) | (18)
4.0
He
helium
2 | | | 6.9
Li
lithium | 9.0
Be
beryllium | | relative atomic mass symbol name atomic (proton) number | | | | <u> </u> | I | | | | 10.8 B boron 5 | 12.0
C
carbon
6 | 14.0 N nitrogen | 16.0
O
oxygen
8 | 19.0 F fluorine | 20.2
Ne
neon
10 | | | 23.0 Na sodium | 24.3 Mg magnesium 12 | (3) | (4) | <i>(</i> 5) | (6) | (7) | (8) | <i>(</i> 9) | (10) | (11) | (12) | 27.0 Al aluminium | 28.1
Si
silicon
14 | 31.0 P phosphorus 15 | 32.1
S
sulfur
16 | 35.5
CI
chlorine
17 | 39.9
Ar
argon
18 | | | 39.1
K | 40.1
Ca | 45.0
Sc | 47.9
Ti | 50.9
V | 52.0
Cr | 54.9
Mn | 55.8
Fe | 58.9
Co | 58.7
Ni | 63.5
Cu | 65.4
Zn | 69.7
Ga | 72.6
Ge | 74.9
As | 79.0
Se | 79.9
Br | 83.8
Kr | | | potassium
19 | calcium
20 | scandium
21 | titanium
22 | vanadium
23 | chromium
24 | manganese
25 | iron
26 | cobalt
27 | nickel
28 | copper
29 | zinc
30 | gallium
31 | germanium
32 | arsenic
33 | selenium
34 | bromine
35 | krypton
36 | | | 85.5
Rb
rubidium | 87.6
Sr
strontium | 88.9
Y
yttrium | 91.2
Zr
zirconium | 92.9
Nb
niobium | 96.0
Mo
molybdenum | [98] Tc technetium | 101.1
Ru
ruthenium | 102.9
Rh
rhodium | 106.4
Pd
palladium | 107.9
Ag
silver | 112.4
Cd
cadmium | 114.8
In
indium | 118.7
Sn
tin | 121.8 Sb antimony | 127.6
Te
tellurium | 126.9

 iodine | 131.3
Xe
xenon | | | 37
132.9
Cs
caesium | 38
137.3
Ba
barium | 39
138.9
La *
lanthanum | 40
178.5
Hf
hafnium | 41
180.9
Ta
tantalum | 42
183.8
W
tungsten | 43
186.2
Re
rhenium | 190.2
Os
osmium | 45
192.2
Ir
iridium | 46
195.1
Pt
platinum | 47
197.0
Au
gold | 200.6
Hg
mercury | 49
204.4
TI
thallium | 50
207.2
Pb
lead | 51
209.0
Bi
bismuth | 52
[209]
Po
polonium | 53
[210]
At
astatine | 54
[222]
Rn
radon | | | 55
[223]
Fr
francium | 56
[226]
Ra
radium | 57
[227]
Ac † | 72
[267]
Rf
rutherfordium | 73
[268]
Db
dubnium | 74
[271]
Sg
seaborgium | 75
[272]
Bh
bohrium | 76
[270]
Hs
hassium | 77
[276]
Mt
meitnerium | 78
[281]
Ds
darmstadtium | 79
[280]
Rg
roentgenium | 80
Eler | 80 81 82 83 84 85 86 Elements with atomic numbers 112-116 have been reported but not fully authenticated | | | | | | | | 87 | 88 | 89 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | not rully admonitoated | | | | | | | | ^{*} **58 – 71** Lanthanides † 90 - 103 Actinides | | 140.1
Ce | 140.9
Pr | 144.2
Nd | [145]
Pm | 150.4
Sm | 152.0
Eu | 157.3
Gd | 158.9
Tb | 162.5
Dy | 164.9
Ho | 167.3
Er | 168.9
Tm | 173.1
Yb | 175.0
Lu | |---|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | | cerium
58 | praseodymium 59 | neodymium
60 | promethium
61 | samarium
62 | europium
63 | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | lutetium
71 | | | 232.0
Th | 231.0
Pa | 238.0
U | [237]
Np | [244]
Pu | [243]
Am | [247]
Cm | [247]
Bk | [251]
Cf | [252]
Es | [257]
Fm | [258]
Md | [259]
No | [262]
Lr | | | thorium | protactinium | uranium | neptunium | plutonium | americium | curium | berkelium | californium | einsteinium | fermium | mendelevium | nobelium | lawrencium | | L | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |