Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination June 2009

Chemistry

CHEM1

Unit 1 Foundation Chemistry

Wednesday 3 June 2009 9.00 am to 10.15 am

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a calculator.

Time allowed

• 1 hour 15 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- All working must be shown.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The Periodic Table/Data Sheet is provided as an insert.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- Your answers to the questions in Section B should be written in continuous prose, where appropriate.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Advice

 You are advised to spend about 50 minutes on Section A and about 25 minutes on Section B.

SECTION A

			Answer all qu	estions in the	e spaces provide	ed.				
1	(a)	Com	aplete the electronic confi	guration for	the sodium ion,	Na ⁺				
		ls ²								
							(1 mark)			
1	(b)	(i)		Write an equation, including state symbols, to represent the process for which the energy change is the second ionisation energy of sodium.						
							(2 marks)			
1	(b)	(ii)		Explain why the second ionisation energy of sodium is greater than the second ionisation energy of magnesium.						
						•••••	(3 marks)			
1	(b)	(iii)	An element X in Period ionisation energies.	3 of the Per	iodic Table has	the following	successive			
				First	Second	Third	Fourth			
			Ionisation energies / kJ mol ⁻¹	577	1820	2740	11600			
			Deduce the identity of e	element X.						
							(1 mark)			
							(1 mark)			

1	(c)	State and explain the trend in atomic radius of the Period 3 elements from sodium to chlorine.
		Trend
		Explanation
		(3 marks)
1	(d)	Explain why sodium has a lower melting point than magnesium.
		(3 marks)
1	(e)	Sodium reacts with ammonia to form the compound $NaNH_2$ which contains the NH_2^- ion. Draw the shape of the NH_2^- ion, including any lone pairs of electrons. Name the shape made by the three atoms in the NH_2^- ion.
		Shape of NH ₂
		Name of shape
1	(f)	In terms of its electronic configuration, give one reason why neon does not form compounds with sodium.
		(1 mark)

Turn over ▶

16

2			able conditions magnesium will react with dilute nitric acid according to the equation.
			$Mg(s) + 2HNO_3(aq) \longrightarrow Mg(NO_3)_2(aq) + H_2(g)$
			g sample of magnesium was added to 36.4 cm ³ of 0.265 mol dm ⁻³ nitric acid. The n excess.
2	(a)	(i)	Calculate the amount, in moles, of magnesium in the 0.0732 g sample.
			(1 mark)
2	(a)	(ii)	Hence calculate the amount, in moles, of nitric acid needed to react completely with this sample of magnesium.
			(1 mark)
2	(a)	(iii)	Calculate the amount, in moles, of nitric acid originally added to this sample of magnesium.
			(1 mark)

(iv) Hence calculate the amount, in moles, of nitric acid that remains unreacted.

ı	Ш	Ш	Ш	П
l	Ш	Ш	Ш	Ш
l	Ш	Ш	Ш	Ш
l	Ш	Ш	Ш	Ш
٠	 ~-			"
	u	4		

(1 mark)

10

2	(b)	In a second experiment, 0.512 mol of hydrogen gas was produced when another sample of magnesium reacted with dilute nitric acid. Calculate the volume that this gas would occupy at 298 K and 96 kPa. Include units in your final answer. (The gas constant $R = 8.31 \mathrm{JK}^{-1}\mathrm{mol}^{-1}$)
		(3 marks)
2	(c)	Concentrated nitric acid reacts with magnesium to form an oxide of nitrogen which contains 30.4% by mass of nitrogen.
		Calculate the empirical formula of this oxide of nitrogen. Show your working.
		(3 marks)

Turn over for the next question

Turn over ▶

3 (a) Two organic compounds with similar relative molecular masses are shown below.

Ethanol

Propane

3 (a) State the type of bond present between the C and H atoms in both of these molecules. Explain how this type of bond is formed.

Type of bond

Explanation

(2 marks)

3 (a) State the strongest type of intermolecular force present in each compound.

Liquid ethanol

Liquid propane

(2 marks)

Ethanol dissolves in water. Draw a diagram to show how one molecule of ethanol **3** (b) interacts with one molecule of water in the solution. Include partial charges and all lone pairs. The ethanol molecule has been drawn for you.

$$\begin{array}{cccc} H & H \\ | & | \\ H - C - C - O \\ | & | \\ H & H \end{array}$$

(3 marks)

3	(c)	Etha	nol was the fuel used in the first mass-produced car, the Model T Ford.
3	(c)	(i)	Write an equation which shows how ethanol burns completely in air to form carbon dioxide and water as the only products.
			(1 mark)
3	(c)	(ii)	Suggest one environmental problem caused by incomplete combustion of ethanol in a car engine.
			(1 mark)
3	(c)	(iii)	Suggest one economic problem for the car user caused by incomplete combustion of ethanol in the car engine.
			(1 mark)
3	(d)		ane is also used as a fuel, although sometimes it can be contaminated with ar-containing impurities. When this propane burns, these impurities form sulfur ide.
3	(d)	(i)	State how the sulfur dioxide can be removed from the waste gases produced when this propane is burned on a large scale in industry. Suggest a reason why the method you have stated may not be 100% efficient.
			How removed
			Reason for less than 100% efficiency
			(2 marks)
3	(d)	(ii)	Although propane has a boiling point of -42°C , it is usually supplied as a liquid for use in camping stoves. Suggest why it is supplied as a liquid.
			(1 mark)

Turn over ▶

13

4	Hex	ane is	a member of the homologous series of alkanes.						
4	(a)	State	State two characteristics of a <i>homologous series</i> .						
		Cha	Characteristic 1						
		•••••							
		Cha	racteristic 2	•••••					
			· ·	ıarks)					
4	(b)	(i)	Hexane can be converted into 2,2-dichlorohexane.						
			Draw the displayed formula of 2,2-dichlorohexane and deduce its empirical formula.						
			Displayed formula						
			Empirical formula						
			(2 n	narks)					
4	(b)	(ii)	Explain why 2,2-dichloro-3-methylpentane is a structural isomer of 2,2-dichlorohexane.						
			(2						
			(Z m)	iarks)					

4 (c)	A reaction	of hexane v	with chlorine	is shown	by the	equation	below.
--------------	------------	-------------	---------------	----------	--------	----------	--------

$$C_6H_{14} + 2Cl_2 \longrightarrow C_6H_{12}Cl_2 + 2HCl$$

Calculate the percentage atom	economy for the fo	ormation of C ₆ H ₁₂ Cl ₂	2 in this reaction.

(2 marks)

1	(4)	The boiling	naints of	coma etroi	ight chain	alkanac	are chown	halow
4	(u)	The boiling	pomis or	some sua	igiii-chain	arkanes	are shown	Delow.

Alkane	C ₄ H ₁₀	C ₅ H ₁₂	C ₆ H ₁₄
Boiling point / °C	-0.5	36.3	68.7

4	(d)	(i)	Explain	the trend	in the	ese boiling	points
-	(u)	(1)	Explain	me nena	III UIC	se builing	pomis

 	 •••••	

(2 marks)

4	(d)	(ii)	Name a process	which can	be used to	separate	C_5H_{12} 1	from C_6H_{14}
---	-----	------	----------------	-----------	------------	----------	---------------	------------------

 • • • • • • • • • •	• • • •
	• .

(1 mark)

11

Turn over ▶

SECTION B

	Answer Question 5 in the spaces provided.				
5	(a)	(i)	Define the term relative atomic mass (A_r) of an element.		
			(2 marks)		
5	(a)	(ii)	A sample of the metal silver has the relative atomic mass of 107.9 and exists as two isotopes. In this sample, 54.0% of the silver atoms are one isotope with a relative mass of 107.1		
			Calculate the relative mass of the other silver isotope.		
			State why the isotopes of silver have identical chemical properties.		
			(4 marks)		

5	(b)	The isotopes of silver, when vaporised, can be separated in a mass spectrometer.
		Name the three processes that occur in a mass spectrometer before the vaporised isotopes can be detected.
		State how each process is achieved.
		(6 marks)
		(o mana)

Question 5 continues on the next page

Turn over ▶

5	(c)	State the type of bonding involved in silver.
		Draw a diagram to show how the particles are arranged in a silver lattice and show the charges on the particles.
		(3 marks)

5	(d)	Silver reacts with fluorine to form silver fluoride (AgF).
		Silver fluoride has a high melting point and has a structure similar to that of sodium chloride.
		State the type of bonding involved in silver fluoride.
		Draw a diagram to show how the particles are arranged in a silver fluoride lattice and show the charges on the particles.
		Explain why the melting point of silver fluoride is high.
		(5 marks)

END OF QUESTIONS

20

GCE Chemistry Data Sheet

Table 1Infrared absorption data

Bond	Wavenumber /cm ⁻¹
N-H (amines)	3300-3500
O-H (alcohols)	3230-3550
C-H	2850 - 3300
O-H (acids)	2500-3000
$C \equiv N$	2220 - 2260
C = O	1680 - 1750
C = C	1620 - 1680
C - O	1000 - 1300
C - C	750-1100

Table 2 ¹H n.m.r. chemical shift data

Type of proton	δ/ppm
ROH	0.5 - 5.0
RCH_3	0.7 - 1.2
RNH_2	1.0 - 4.5
R_2CH_2	1.2 - 1.4
R_3CH	1.4 - 1.6
R-C-C- 	2.1-2.6
R-O-C- H	3.1-3.9
RCH ₂ Cl or Br	3.1 - 4.2
$\begin{array}{ccc} R-C-O-C-\\ \parallel & \parallel \\ O & \mathbf{H} \end{array}$	3.7-4.1
Ŗ Ħ	
C = C	4.5 - 6.0
R-C H	9.0-10.0
R-C $O-H$	10.0-12.0

Table 3 ¹³C n.m.r. chemical shift data

Type of carbon	δ/ppm
$-\overset{ }{\mathbf{C}}-\overset{ }{\mathbf{C}}-$	5-40
$R - \stackrel{\mid}{C} - Cl$ or Br	10-70
$\begin{array}{c c} R-C-\overset{ }{C}-\\ 0 \end{array}$	20-50
$\mathbf{R} - \mathbf{C} - \mathbf{N}$	25-60
-C-O- alcohols, ethers or esters	50-90
$\mathbf{C} = \mathbf{C}$	90-150
$R-C \equiv N$	110-125
	110-160
R-C- esters or acids	160-185
R-C- aldehydes	190 – 220

The Periodic Table of the Elements

1	2											3	4	5	6	7	0	
(1)	(2)			Key			1.0 H hydrogen					(13)	(14)	(15)	(16)	(17)	(18) 4.0 He helium 2	
6.9 Li lithium	9.0 Be beryllium		relative atomic mass symbol name atomic (proton) number				<u> </u>	I				10.8 B boron 5	12.0 C carbon 6	14.0 N nitrogen	16.0 O oxygen 8	19.0 F fluorine	20.2 Ne neon 10	
23.0 Na sodium	24.3 Mg magnesium 12	(3)	(4)	<i>(</i> 5)	(6)	(7)	(8)	<i>(</i> 9)	(10)	(11)	(12)	27.0 Al aluminium	28.1 Si silicon 14	31.0 P phosphorus 15	32.1 S sulfur 16	35.5 CI chlorine 17	39.9 Ar argon 18	
39.1 K	40.1 Ca	45.0 Sc	47.9 Ti	50.9 V	52.0 Cr	54.9 Mn	55.8 Fe	58.9 Co	58.7 Ni	63.5 Cu	65.4 Zn	69.7 Ga	72.6 Ge	74.9 As	79.0 Se	79.9 Br	83.8 Kr	
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36	
85.5 Rb rubidium	87.6 Sr strontium	88.9 Y yttrium	91.2 Zr zirconium	92.9 Nb niobium	96.0 Mo molybdenum	[98] Tc technetium	101.1 Ru ruthenium	102.9 Rh rhodium	106.4 Pd palladium	107.9 Ag silver	112.4 Cd cadmium	114.8 In indium	118.7 Sn tin	121.8 Sb antimony	127.6 Te tellurium	126.9 iodine	131.3 Xe xenon	
37 132.9 Cs caesium	38 137.3 Ba barium	39 138.9 La * lanthanum	40 178.5 Hf hafnium	41 180.9 Ta tantalum	42 183.8 W tungsten	43 186.2 Re rhenium	190.2 Os osmium	45 192.2 Ir iridium	46 195.1 Pt platinum	47 197.0 Au gold	200.6 Hg mercury	49 204.4 TI thallium	50 207.2 Pb lead	51 209.0 Bi bismuth	52 [209] Po polonium	53 [210] At astatine	54 [222] Rn radon	
55 [223] Fr francium	56 [226] Ra radium	57 [227] Ac †	72 [267] Rf rutherfordium	73 [268] Db dubnium	74 [271] Sg seaborgium	75 [272] Bh bohrium	76 [270] Hs hassium	77 [276] Mt meitnerium	78 [281] Ds darmstadtium	79 [280] Rg roentgenium	80 Eler	80 81 82 83 84 85 86 Elements with atomic numbers 112-116 have been reported but not fully authenticated						
87	88	89	104	105	106	107	108	109	110	111	not rully admonitoated							

^{*} **58 – 71** Lanthanides

† 90 - 103 Actinides

	140.1 Ce	140.9 Pr	144.2 Nd	[145] Pm	150.4 Sm	152.0 Eu	157.3 Gd	158.9 Tb	162.5 Dy	164.9 Ho	167.3 Er	168.9 Tm	173.1 Yb	175.0 Lu
	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	lutetium 71
	232.0 Th	231.0 Pa	238.0 U	[237] Np	[244] Pu	[243] Am	[247] Cm	[247] Bk	[251] Cf	[252] Es	[257] Fm	[258] Md	[259] No	[262] Lr
	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
L	90	91	92	93	94	95	96	97	98	99	100	101	102	103