Write your name here		
Surname		Other names
Pearson Edexcel Certificate Pearson Edexcel International GCSE	Centre Number	Candidate Number
Chemistry Unit: KCH0/4CH0 Science (Double Aw Paper: 1C		0/4SC0
Thursday 18 May 2017 – Mo Time: 2 hours	orning	Paper Reference KCH0/1C 4CH0/1C KSC0/1C 4SC0/1C
You must have: Calculator, ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross ⊠.

Information

- The total mark for this paper is 120.
- The marks for **each** question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

		[]	[]							
	0				84 Krypton 36	131 Xenon 54	222 Radon 86			
	2		19 Fluorine 9	35.5 Chlorine 17	80 Br 35	127 odine 53	210 At Astatine 85			
	9			1	79 Selenium 34	128 Te Tellurium 52	210 Polonium 84			
	2		14 Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83			
	4		12 Carbon 6	28 Silicon 14	73 Germanium A 32	S 119 S 119 S 119	207 Pb 16ad 82			
	e		Boron 5	27 Aluminium 13	70 Gallium 31		204 Th B1			
					65 Zn Zinc 30	<u> </u>	201 Hg Mercury 80			
THE PERIODIC TABLE					63.5 Cu ^{Copper} 29	108 Ag Silver	197 Au Gold 79			
IODIC					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78			
e per					59 Cobalt 27		192 1 ridium 77			
Η Η					s Le s	101 Ruthenium 44	190 Somium 76			
	Group	Hydrogen - 1000			55 Mn Manganese 25	99 Tcchnetium R 43			Key	Retative atomic mass Symbol Name Atomic number
	0				52 Chromium 24	96 Mo Molybdenum 42	184 V 74			
					51 Vanadium 23	93 Nb Miobium 41				
							1			
					45 Scandium 1 21	89 ۲ttrium 39 Zi	139 La Lanthanum H 57	227 Actinium 89		
	N		9 Beryllium 4	24 Mg Magnesium 12				226 Radium 88		
	-		7 Lí 3 3 8 8 9		39 X Potassium 19	86 Hubidium 37	133 Cs 55 Bi Bi			
		Period	<u>ت</u> م	- კ ო	4 Pot	ى 19	ۍ ۵	7 Fra		
		let.								

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Answer ALL questions.

1 The diagram represents an atom of an element.

Use numbers from the box to complete the table.

You may use each number once, more than once or not at all.

1 2 3 4 5 6 7

(5)

atomic number of the atom	
number of shells shown	
mass number of the atom	
number of protons in an isotope of this element	
group where the element is found in the Periodic Table	

(Total for Question 1 = 5 marks)

2	Substa	ances can be classified as elements, compounds or mixtures.	
	(a) Wl	nich of these is the formula for a molecule of an element?	(1)
	Α	Н	(1)
		H,	
		H ₂ O	
		H ₂ O ₂	
	(b) WI	nich of these is a mixture?	(1)
	Α 🛛	sodium	
	B	chlorine	
	C	sodium chloride	
	D	sodium chloride solution	
	(c) Wl	nich method can be used to separate the dyes in a food colouring?	
	A	chromatography	(1)
	B	crystallisation	
	🛛 C	evaporation	
	D	filtration	

(d) A student adds a large crystal of sodium chloride to some water in a beaker and leaves the beaker for a day.

The diagram shows the beaker immediately after adding the crystal, and after one day.

immediately after adding crystal

after a day

After a day, the student takes a sample from the top of the liquid and tests it to see if it contains chloride ions.

The test is positive.

(i) Describe how the student should do the test.

Include the observation for a positive test in your answer.

(3)

(ii) Name the process by which chloride ions move from the crystal to the top of the liquid.

(1)

(e) This apparatus is used in a laboratory to separate a mixture of liquids with similar boiling points. water out mixture of liquids water in (i) The passage describes what happens when the apparatus is used. Use words from the box to complete the passage. You may use each word once, more than once or not at all. (3) beaker burette column condenser flask thermometer The mixture of liquids is placed in the Water is used to cool the vapour in the

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

7

	(iii) Explain, wit not form or	h reference t ո C.	o the symb	ols in the	box, why th	ie brown so	lid does
DO NOT WRITE IN THIS AREA		Fe	Fe ²⁺	Zn	Zn ²⁺	e⁻	
I I							(3)
					(Total f	or Questio	n 3 = 7 marks)
DO NOT WRITE IN THIS AREA							
ON O							
5							
DO NOT WRITE IN THIS AREA							
							9

4	The table shows the formulae of some positive and negative ions.	

It also shows the formulae of some compounds containing these ions.

	Cu ²⁺	Fe ³⁺	NH ₄ ⁺
CI⁻		FeCl ₃	NH ₄ Cl
SO ₄ ²⁻	CuSO ₄	Fe ₂ (SO ₄) ₃	
CO ₃ ²⁻	CuCO ₃		(NH ₄) ₂ CO ₃

(a) Complete the table by giving the formulae of the three missing compounds.

(b) The correct name of the compound with the formula ${\rm CuSO}_{\!_4}$ is

A copper(I) sulfate

- B copper(I) sulfite
- C copper(II) sulfate
- D copper(II) sulfite
- (c) Which of these descriptions is correct for $NH_4Cl(s)$ and for $NH_4Cl(aq)$?

(1)

(3)

(1)

	NH ₄ CI(s)	NH ₄ Cl(aq)
A	colourless	colourless
B	colourless	white
🖾 C	white	colourless
D	white	white

(d) Th	ese tests are carried out on two separate samples of iron(III) sulfate solution.	
	test 1 add sodium hydroxide solution	
	test 2 add dilute hydrochloric acid, then add barium chloride solution	
(i)	Which observation is correct for test 1?	
		(1)
×	A brown precipitate	
\times	B brown solution	
\times		
\times	D green solution	
(ii)	Give the names of the two products formed in test 1.	
		(2)
	and	
(iii) In test 2, there is no visible change after adding dilute hydrochloric acid.	
(State why the acid is added.	
	State why the acid is added.	(1)
(IV) In test 2, barium sulfate is formed after adding barium chloride solution.	
	State the observation that is made.	(1)

DO NOT WRITE IN THIS AREA

(e) Describe a tes	t to show that a sample of $CuCO_3$ contains the CO_3^{2-} ion	(3)
	(Total for Quarti	an A = 12 marks)
	(Total for Questi	on 4 = 15 marks)

BLANK PAGE

remove this impurit	- -	10
	for the reactions that occur are	
	calcium carbonate \rightarrow calcium oxide + carbon dioxide	
	calcium oxide + silicon dioxide \rightarrow calcium silicate	
Write a chemical eq	uation for each of these reactions.	(2)
reaction 1		
reaction 2		
(c) The equation for a r	aaction that accurs in the blact furnase is	
(c) The equation for a fi	eaction that occurs in the blast furnace is	
	$2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$	
Explain, with referer	nce to the reactants in this equation, why this is a redox rea	iction. (2)
	(Total for Question 5 = 6	manulus)
	(Total for Question 3 = 0	marks)
	(Total for Question 3 – 0	marks)
	(Iotal for Question 3 – 0	marks)
	(Total for Question 3 – 0	marks)
	(Total for Question 3 – 0	marks)
	(Total for Question 3 – 0	marks)
	(Total for Question 3 – 0	(marks)
	(Total for Question 3 – 0	marks)
		marks)
		marks)
		(marks)
		(marks)
		(marks)

		(2)
	and	
(iii) Draw the displayed formula of the sa	turated product of reaction 2.	(1)
	HCC=-C H H HCH H	
Draw the displayed formula for each		(2)
Draw the displayed formula for each	of the two other isomers.	()

Turn over 🕨

DO NOT WRITE IN THIS AREA

P 4 8 0 8 4 R A 0 1 8 3 6

7 A student uses the reaction between iron and oxygen in an experiment to find the percentage by volume of oxygen in air.

The diagram shows his apparatus.

DO NOT WRITE IN THIS AREA

at start	t
	20 30 40 50 60 70 80 90 100 cm ³
at end	
	20 30 40 50 60 70 80 90 100 m ³
Use the read	dings to complete the table, entering all values to the nearest 1 cm ³ . (3)
	volume reading at start in cm ³
	volume reading at end in cm ³
	change in volume in cm ³
d) The student	t repeats the experiment but obtains a much smaller change in volume.
Which of the	ese could be a reason for the smaller change in volume? (1)
A he uses	10 cm ³ of water instead of 5 cm ³
	es the apparatus for a longer time
B he leave	es the apparatus in a warmer place
	ine apparatus in a warner place

DO NOT WRITE IN THIS AREA

(e) During another experiment, the student writes down these values.

volume of air in conical flask and glass tube	250 cm ³
syringe reading at start	90
syringe reading at end	20
volume of oxygen reacting	70 cm ³

The student incorrectly calculates the percentage by volume of oxygen in air.

This is his working.

$$\frac{70 \times 100}{90} = 78\%$$

- (i) Identify the mistake in his working.
- (ii) Use values from the table to correctly calculate the percentage by volume of oxygen in air.

(2)

(1)

percentage =%

(Total for Question 7 = 9 marks)

8 Hydrogen iodide can be manufactured from its elements using this reaction.

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ $\Delta H = -9 \text{ kJ/mol}$

A temperature of 500 °C, a pressure of 4 atm and a platinum catalyst are used in this manufacturing process.

(a) The diagram shows the reaction profile if a catalyst is not used.

22

(c) The manufacturer then carries out this reaction using the same catalyst, a temperature of 500 °C, but a pressure of 2 atm.
 (i) Suggest what effect this change in pressure would have on the rate of the reaction.
 (1)
 (ii) Explain the effect of this change on the yield of hydrogen iodide.
 (2)

- **9** Bromine, chlorine and iodine are elements in Group 7 of the Periodic Table.
 - (a) Place ticks (✓) in the boxes to show the three correct statements about the elements in Group 7.

(3)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

the elements can be obtained by electrolysing molten metal halides	
the elements with paler colours are lower down the group	
the boiling points decrease down the group	
the elements form covalent compounds with other non-metals	
their molecules contain two atoms	
all are gases at room temperature	

(b) Group 7 elements are called halogens because they react with metals to form salts.

Write a chemical equation to show the formation of the salt potassium iodide from a metal and a halogen.

(1)

(2)

(c) The equation for the reaction between hydrogen and chlorine is

 $H_2^{}$ + $CI_2^{}$ \rightarrow 2HCl

At room temperature, hydrogen chloride and hydrochloric acid can both be represented by the formula HCI.

Insert the state symbol after each formula.

hydrogen chloride, HCl(.....)

hydrochloric acid, HCI(.....)

(d) Hydrogen chloride is dissolved in methylbenzene.

When a piece of magnesium ribbon is then added to this solution there is no reaction.

When water is added to this mixture and it is shaken, a reaction occurs.

Explain the observation in this reaction.

(3)

O NOT WRITE IN THIS AREA

- X X - 1	
7 X I I	
2.822	
$\nabla / \nabla = 1$	
$X \times Z > -1$	
75 X X I I	
$X \neq X \neq -$	
75 / 2	
$\sim \sim$	
- X / 2 - I	
$\times \times \times > = 1$	
$(X \times Z)$	
XXXX	
XXXX	
(XXX	
スススノー	
(XXX)	

(e) Halogens can take part in displacement reactions with halides.
--

The table gives information about the addition of halogen solutions to halide solutions.

Test	Halogen solution added	Halide solution	Result
1	bromine	sodium iodide	displacement reaction occurs
2	chlorine	sodium chloride	no reaction
3	iodine	sodium chloride	no reaction

(i) Explain which test gives a result that **cannot** be used to compare the reactivities of halogens.

(2)

(ii) Which observation shows that a displacement reaction occurs in test 1?

(a) A student	draws this labelled diagram to show the particles in magnesium metal	•
	delocalised protons $+$ $ +$ $ +$ $-$ - $+$ $ +$ $-$	
	s two mistakes.	
State the t	two corrections he should make to his labelled diagram.	(2)
1		
2		
(b) Explain wł	hy magnesium metal is malleable and a good conductor of electricity.	(4)

P 4 8 0 8 4 R A 0 2 7 3 6

Th	e ch	nemical equatio	ns for these reactions are	
		reaction 1	$2Mg + O_2 \rightarrow 2MgO$	
		reaction 2	$\rm Mg ~+~ H_2SO_4 ~\rightarrow~ MgSO_4 ~+~ H_2$	
(i)	ln	reaction 1, som	e magnesium is ignited and then placed	d in a jar of oxygen gas.
	Sta	ate two observa	tions that would be made.	(2)
				(2)
(ii)	Wł	nich of these is	a correct statement about the gas forme	ed in reaction 2?
				(1)
\mathbf{X}			eaky pop with a lighted splint	
	B	it relights a glo		
×	C		blue litmus paper red	
×	D	it turns limewa	ater milky	

 (d) The student used this method to obtain a sample of magnesium sulfate crystals from the solution formed in reaction 2. heat the solution in a beaker for several minutes dip a glass rod into the hot solution for a few seconds and then remove it allow the solution to cool to room temperature filter off the crystals and then dry them 	
(i) Why does the student heat the solution?	(1)
(ii) Explain why the student dips a glass rod into the heated solution.	(2)
(iii) Give the formulae of the two compounds that pass through the filter paper.	(2)
2	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(e) After drying the crystals, the student weighs them and then heats them until they reach a constant mass.

This equation represents the change that occurs during heating.

 $\mathsf{MgSO}_{\!_{4}}\!.\mathsf{xH}_{\!_{2}}\!\mathsf{O}\,\rightarrow\,\mathsf{MgSO}_{\!_{4}}\,+\,\mathsf{xH}_{\!_{2}}\!\mathsf{O}$

These are the student's results.

mass of dry crystals before heating = 17.2 g

mass of crystals after heating to a constant mass = 8.3 g

Use these results to find the value of x in the formula of $MgSO_4$:xH₂O [M_r values: $MgSO_4 = 120$, H₂O = 18]

(4)

value of x =

(Total for Question 10 = 18 marks)

- **11** This question is about calcium compounds.
 - (a) The diagram gives information about the reactions of some calcium compounds used to make mortar.

Mortar contains calcium hydroxide and is used to join bricks together when building walls.

These reactions occur when the calcium hydroxide in mortar is obtained from calcium carbonate.

- calcium carbonate is strongly heated to form calcium oxide
- water is added to calcium oxide to form calcium hydroxide

The calcium hydroxide in mortar reacts with carbon dioxide from the atmosphere to form calcium carbonate.

(i) The equation for one of these reactions is

$$CaO + H_2O \rightarrow Ca(OH)_2$$

Calculate the mass of water needed to react exactly with 28 kg of calcium oxide.

(3)

mass of water =

(ii) Explain why the reaction between carbon dioxide and calcium hydroxide can be described as neutralisation.

(2)

- DO NOT WRITE IN THIS AREA
- DO NOT WRITE IN THIS AREA

(b) Calcium carbide is a reactive solid. When water is added to it, a gas (ethyne) is formed.

A teacher uses this apparatus to investigate the rate of reaction between calcium carbide and water.

This is the teacher's method.

- record the temperature of the water in the flask
- add a known mass of calcium carbide and replace the bung in the flask
- record the time taken to collect 100 cm³ of gas in the syringe

The teacher repeats the experiment using the same volume of water and the same mass of calcium carbide, but with the water at different temperatures.

Temperature of water in °C Time to collect 100 cm³ of gas in seconds Plot these results on the grid and draw a curve of best fit. (3) 80 -Time to collect 100 cm³ of gas in seconds Temperature in °C

The table shows the results for six different temperatures.

DO NOT WRITE IN THIS AREA

BLANK PAGE

BLANK PAGE

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

