

GCE

Physics B (Advancing Physics)

Advanced GCE

Unit G494: Rise and Fall of the Clockwork Universe

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Annotations available in SCORIS

Annotation	Meaning
[.[·]·]	Benefit of doubt given
GON	Contradiction
×	Incorrect response
1-(9-1	Error carried forward
170	Follow through
[NAM]	Not answered question
2.000	Benefit of doubt not given
l ⊈+ù d	Power of 10 error
N	Omission mark
	Rounding error
187	Error in number of significant figures
V	Correct response
	Arithmetic error
2	Wrong physics or equation

Annotations used in detailed mark scheme

Annotation	Meaning
/	alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Section A

Question		on	Answer	Marks	Guidance
1	(a)		kg m s ⁻¹	1	
	(b)		kg m ² s ⁻²	1	
2			 effect on gas in the box eg pressure in the box falls (because <i>p</i> = <i>NkT/V</i>) particle density in box falls fewer particles hitting outside of bag (per second); reason why bag volume increases eg pressure inside initially greater than outside more (frequent) collisions from gas inside bag than outside V rises so that p falls until same as in box; force pushing bag outwards (from particle collisions) initially greater than force pushing bag inwards 	1	For a mark to be awarded it must be quite clear which gas they are referring to.
3				2	 any constant amplitude, across whole time span for both graphs. each correct graph as shown for [1] each allow ecf from velocity graph to energy graph if former is incorrect accept full-wave rectified shape instead of correct shape for energy graph overlay provided to show correct phase zero-crossing points, maxima, minimas and amplitudes must be correct within plus or minus half a square

G	Question		Answer	Marks	Guidance
4	(a)			1	arrow points from satellite to centre of Earth (any length) arrow must touch satellite, but can be from outside arrow tail on or within overlay
	(b)		EITHER force at right angles to velocity / motion OR no distance moved / displacement in direction of force OR no component of force parallel to velocity / motion (ORA)	1	ignore references to equipotentials ignore work = force × distance
5			$V_2 = \frac{p_1 V_1 T_2}{p_2 T_1} = \frac{1.0 \times 10^5 \times 1.4 \times 10^{-6} \times 320}{5.6 \times 10^5 \times 280};$ $V_2 = 2.9 \times 10^{-7} \text{ m}^3$	1	evidence of use of $\frac{pV}{T}$ = constant for [1] reject 3(.0)×10 ⁻⁷ m ³
6	(a)		A	1	
	(b)		C	1	
7	(a)		(red shift different because) one side moves away from us faster than the other side (because of rotation); red shift / wavelength increases for increased (relative) velocity;	1	 accept (red shift different because) one side moves away from us and the other side moves towards us not red shift changes as velocity changes ignore blue shift accept more red shift from side moving away / less red shift from side moving towards
	(b)		makes no difference / light has constant speed (in a	1	
8	(a)		$2700 \times 8 \times 10^{-4} = 2.16 \text{ kg} / 2.2 \text{ kg}$	1	
Ē	(<u>)</u>		temperature difference = 80 K :	1	accept 100 - 20 for 80 K
	(~)		$920 \times 2.16 \times 80 = 1.59 \times 10^5 \text{ J} / 1.6 \times 10^5 \text{ J}$	1	2 kg and 80 K gives 1.47×10^5 J for [2] no ecf on incorrect ΔT (such as 100 or 20)
9			$n = pV/RT$, $n = 2.1 \times 10^7 \times 2.9 \times 10^{-2} / 8.3 \times 290 = 253$ mol;	1	· · · · · · · · · · · · · · · · · · ·
			mass = $253 \times 4.0 \times 10^{-3} = 1(.0)$ kg	1	allow ecf incorrect <i>n</i> in calculating mass for [1]
			Total	20	

Q	uestion	Answer	Marks	Guidance
10	(a)	$v = 2\pi r/T$	1	reject incorrect capitals eg R, t
	(b)	$mv^2/r = GMm/r^2$; clear substitution for v and manipulation to final formula	1 1	look for evidence of use of both rules for [1] ignore minus signs accept correct use of $mr\omega^2 = \frac{GMm}{r^2}, \omega = \frac{2\pi}{T}$ etc for [2] no ecf on incorrect (a)
	(C)	4.2(2)×10 ⁷ m	1	not 4×10 ⁷ m accept 4.2(4)×10 ⁷ m
	(d)	$E_{g} = mV_{g}, V_{g} = -GM/r;$ $E_{g} = 6.7 \times 10^{-11} \times 4.7 \times 10^{2} \times 6.0 \times 10^{24} / 4.2 \times 10^{7}$ GPE = - 4.5×10 ⁹ J;	1 2	evidence use of of both rules for [1] accept correct answer without sign for [2] 4×10^7 m gives $-4.7(2) \times 10^9$ J for [3] 4×10^7 m gives $4.7(2) \times 10^9$ J for [2] ignore use of <i>GPE</i> = mgh etc
	(e)	KE = +2.2(6)×10 ⁹ J / 2.3×10 ⁹ J; GPE + KE = -2.2×10 ⁹ J	1	accept anything from -2.2×10 ⁹ J to -2.5×10 ⁹ J for [2] ecf from incorrect KE or GPE (including sign) eg 4.5×10^{-9} J + 2.3×10 ⁹ J = 6.8×10^{9} J 4.7×10^{9} J + 2.3×10 ⁹ J = 7.0×10^{9} J accept correct use of $TE = -\frac{GMm}{2r}$ for [2] final answer must be consistent with answer to (d)
		Total	9	

Que	Question		Answer	Marks	Guidance
11 (a	a)			2	ammeter in series (before or after thermistor) for [1] voltmeter in parallel (left or right of thermistor) for [1] accept voltmeter in parallel with battery look for correct symbols for each mark circuit must be complete to earn any marks
()	h)		$G = 1.4 \times 10^{-3} / 5.6 = 2.5 \times 10^{-4} S$	1	
	c)	(i)	 any three of the following, [1] each: BF gives proportion / probability / fraction of electrons with energy ε / able to move; BF increases with increasing temperature average energy per particle increases with increasing temperature energy exchanged between atoms / electrons at random electrons more likely to / more electrons obtain energy ε as temperature increases 	3	not number of electrons award third mark only if there are no spelling mistakes in specialist words (such as conductance, electron, energy).
	c)	(ii)	• Current is now of free electrons substitution to find G_0 eg EITHER $2.5 \times 10^{-4} = G_0 e^{\frac{5.0 \times 10^{-20}}{1.4 \times 10^{-23} \times 300}}$ OR $\ln 2.5 \times 10^{-4} = \ln G_0 - \frac{5.0 \times 10^{-20}}{1.4 \times 10^{-23} \times 300}$; evaluation of $G_0 = 37$ S / elimination of G_0 from simultaneous equations; $G = 37e^{\frac{5.0 \times 10^{-20}}{1.4 \times 10^{-23} \times 400}} = 4.9 \times 10^{-3}$ S;	1	3×10^{-4} S gives 44 S 44 S gives 5.8×10^{-3} S / 5.9×10^{-3} S no ecf on incorrect value of G_0 ignore use of $G_0 = 2.5 \times 10^{-4}$ S or 3×10^{-4} S
			Total	9	

Question		on	Answer	Marks	Guidance
12	(a)		constant speed / velocity / motion (for first 5 years)	1	
	(b)	(i)	light goes 1 light-year in 1 year	1	
		(ii)		2	starts at t = 1.0 s and goes up and right at 45° to meet spacecraft trace, returning at 45° to reach Earth at 9.0 s. accept straight lines drawn without a ruler accept all lines are drawn at 45° for [1]
	(c)	(i)	overall trip time = 9 - 1 (= 8 yr) ; distance = 8 / 2 (= 4 light-year);	1 1	accept correct method (such as $d = ct/2$) with no evaluation for [1]
		(ii)	EITHER pulse delayed by 1 yr then takes 4 yr to get to spaceship; so event time = $4 + 1 (= 5 \text{ yr})$; OR light reaches spaceship halfway through its trip; time when it gets there is EITHER (9+1)/2 OR (9-1)/2 + 1 (= 5 yr);	1 1	accept correct method with no evaluation for [1] accept 8/2 + 1, but not 4 + 1
		(iii)	EITHER $v = \frac{4(\text{light} - \text{year}) \times 3 \times 10^8}{5(\text{year})} (= 2.4 \times 10^8 \text{ m s}^{-1})$ OR $v = \frac{4 \times 365 \times 24 \times 3600 \times 3 \times 10^8}{5 \times 365 \times 24 \times 3600} (= 2.4 \times 10^8 \text{ m s}^{-1})$	1	accept reverse calculation to find distance or time accept $v = \frac{4 \times c}{5} (= 2.4 \times 10^8 \text{ m s}^{-1})$ for [1]
	(d)	(i)	$\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = 1.67 = 1.667 \text{ etc.}$	1	not 1.6, 1.7 not 1.666 etc. not 5/3
		(ii)	6.0	1	
			Total	11	

Question		on	Answer	Marks	Guidance
13	(a)		T = 273 + 17 = 290 K; $kT = 1.4 \times 10^{-23} \times 290 = 4.06 \times 10^{-21}$ J / 4.1×10 ⁻²¹ J	1 1	conversion from °C to K for [1] 17 K gives 2.4×10^{-22} J for [1] $E = 3/2 kT$ gives 6.09×10^{-21} J for [2]
	(10)				allow ecf for incorrect T
	(0)		$m = 0.1676.0 \times 10^{10} = 2.6(7) \times 10^{10} \text{ kg};$ EITHER $F_{} = \frac{1}{2}mv^{2}, v = \sqrt{2E}.$	1	allow ecf on incorrect <i>m</i> , including 0.61 kg
			$L_{k} = \frac{1}{2} m^{2}, v = \sqrt{\frac{1}{m}};$ 1.7×10 ² m s ⁻¹ ; OR $\frac{1}{2} Nmc^{2} = \frac{1}{2} 3kT$	1	allow ect on incorrect <i>E</i> from (a) 5×10^{-21} J gives 1.9×10^2 m s ⁻¹ 6.09×10^{-21} J gives 2.1×10^2 m s ⁻¹ ;
			$pV = NKT = \frac{1}{3}, c^{-} = \frac{1}{m}$ 2.1×10 ² m s ⁻¹ ;		$kT = 5 \times 10^{-21}$ J gives 2.4×10 ² m s ⁻¹ by second method
	(c)	(i)	 description of random walk eg path is a string of straight lines with varying length and direction; reasons for random walk bromine molecules collide with air molecules; (random) change of direction/velocity on each collision; 	1 1 1	ignore use of 'random' or 'walk' in description accept a diagram for [1] eg QWC: third mark only awarded for complete description and explanation
		(ii)	EITHER average speed (and separation) of molecules constant OR average distance between collisions constant; (number of collisions) <i>N</i> proportional to (elapsed time) <i>t</i> ; $x \propto \sqrt{N}$ and $N \propto t$, so $x = C\sqrt{t}$;	1 1 1	award [1] for each clear and correct step in argument,
			Total	11	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

