

GCE AS and A Level

Physics B: Physics In Context

AS exams 2009 onwards A2 exams 2010 onwards

Unit 2: Approved specimen mark scheme

Version 1.1

General Certificate of Education

Physics 1456

Specification B: Physics In Context

PHYB2 Physics Keeps Us Going

Mark Scheme

Specimen Draft

The specimen assessment materials are provided to give centres a reasonable idea of the general shape and character of theplanned question papers and mark schemes in advance of the first operational exams.

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

PHYB2: Physics Keeps us Going

Section A

Question 1			
	3600 000 J ✓	AO2	1
		Total	1

Question 2			
	D✓	AO2	1
		Total	1

Question 3			
	only melting ice on land raises sea level \checkmark	AO1	2
	a floating body displaces its own mass of water \checkmark	AO1	2
		Total	2

Question 4			
	use of $R = \frac{\rho l}{A} \checkmark$	AO1	
	227 ✓	AO2	3
	$\Omega \checkmark$	AO1	
		Total	3

Question 5			
(a)	use of $E = mgh \checkmark$	AO1	2
	2680 J ✓	AO2	2
(b)	use of $v^2 = 2$ as \checkmark	AO1	2
	9.1 m s ⁻¹ \checkmark	AO2	2
(c)	increases the time taken for the athlete to come to rest/reduced deceleration		
	force = mass × acceleration/mass × change in velocity/time \checkmark	AO1	2
	or momentum argument		
	or energy argument ✓	AO2	
		Total	6

Question 6			
(a)	efficiency = $\frac{12}{63} \times 100 \checkmark$	AO1	2
	19% √	AO2	
(b)	greater power output to wheels so wider here \checkmark	AO1	
	less thermal energy transfer to surrounding so narrower here \checkmark	AO2	2
		Total	4

Question 7			
(a)	energy transmitted per second = $1.2 \times 0.75 \times 12 \checkmark$	AO1	2
	energy transmitted per second = 11 W \checkmark	AO2	2
(b)	decrease as the trapped air is a bad conductor \checkmark	AO1	1
		Total	3
	Section A Total		20

Section B

Que	stion 8			
(a)	(i)	velocity is constant 🗸	AO1	
		no acceleration \checkmark	AO1	4
	(ii)	$1.5\sin 50 = D\cos 55\checkmark$	AO2	4
		2.0 kN ✓	AO2	
(b)	(i)	1.15 kN ✓	AO2	
	(ii)	total resistance to motion = $1200 + 1150 \text{ N} \checkmark$	AO2	
		use of power = $Fv \checkmark$	AO1	5
		20 ✓	AO2	
		kW ✓	AO1	
(c)		boat now has resultant force of 1200 N acting on it \checkmark	AO2	2
		boat will accelerate (until resistance of water = 2350 N) \checkmark	AO2	2
			Total	11

Que	estion 9			
(a)	(i)	use of appropriate data from graph \checkmark	AO3	
		answer in acceptable range (to be decided) \checkmark	AO3	
	(ii)	zero at 0, 0.2 0.58, 0.8 and 1 s (approx) ✓	AO3	4
		reasonable attempt to show relative magnitudes \checkmark	AO3	
(b)		appreciation of area under the graph \checkmark	AO3	
		appropriate counting of squares \checkmark	AO3	
		distance per square ✓	AO3	4
		correct answer in acceptable range ✓	AO3	
			Total	8

Question 10			
(a)	so that each lamp is connected directly across the battery \checkmark	AO1	2
	if one lamp blows others are still on \checkmark	AO1	Z
(b)	use of <i>power</i> = $VI \checkmark$	AO1	
	current through each headlight = $60/12 = 5.0$ A		2
	or current through each tail light = $8/12 = 0.67 \text{ A} \checkmark$	AO2	3
	total current = $2 \times 5.0 + 2 \times 0.6667 = 11(.3) \text{ A} \checkmark$	AO2	
(c)	the lamp with the highest power rating has the least resistance \checkmark	AO1	
	the resistance is greater because the temperature of the filament is lower \checkmark	AO1	3
	and resistance increases with temperature \checkmark	AO1	
(d) (i)	(use of energy = power \times time)		
	energy dissipated = $(8.5) \times 2 \times 12 \times 3600$ (any power × time) \checkmark	AO1	
	energy dissipated = $1.1(2) \times 10^6$ J \checkmark	AO2	
(ii)	stored energy in battery = $12 \times 1.2 \times 24 \times 3600 = 1.24 \times 10^{6} \checkmark$	AO1	5
	energy to start = $12 \times 100 \times 1 = 1200 \text{ J} \checkmark$	AO2	
	energy left = $(1.24 - 1.12) \times 10^6 = 120000$ J so hence car will start \checkmark	AO2	
	(conclusion assuming all working correct)		
			13

Question 11			
(a)	knows P/d^3 should be constant \checkmark	AO3	
	2 calculations correct ✓	AO3	3
	at least three calculations correct \checkmark	AO3	
(b)	power output would increase for same wind speed \checkmark	AO3	
	area swept out by turbine blades would be four times greater \checkmark	AO3	3
	mass of air striking blades per second would be four times greater \checkmark	AO3	
		Total	6

Question 12			
(a)	use of power = $V^2/R \checkmark$	AO1	2
	300 Ω ✓	AO2	2
(b) (i)	quotes potential divider formula or uses ratios \checkmark	AO1	
	correct substitution \checkmark	AO2	
	329 (330) Ω ✓	AO2	5
(ii)	power dissipated proportional to resistance or calculates powers \checkmark	AO2	C
	52% ✓	AO2	
(c)	power increases so current increases ✓	AO2	
	overheating/melting can occur (in wires or fuse) 🗸	AO3	3
	possible fire or fuse blows ✓	AO3	
(d)	current = 2.86 A \checkmark	AO2	2
	time for which it operates = 0.45 hs \checkmark	AO2	Z
		Total	12