Mark Scheme 4751 June 2006

Section A

	IOII A	1	T	
1	$[r] = [\pm] \sqrt{\frac{3V}{\pi h}}$ o.e. 'double-decker'	3	2 for $r^2 = \frac{3V}{\pi h}$ or $r = \sqrt{\frac{V}{\frac{1}{3}\pi h}}$ o.e. or M1	
			for correct constructive first step or for	
			$r = \sqrt{k}$ ft their $r^2 = k$	3
2	$a = \frac{1}{4}$	2	M1 for subst of -2 or for $-8 + 4a + 7 = 0$	
			o.e. obtained eg by division by $(x + 2)$	2
3	3x + 2y = 26 or $y = -1.5x + 13$ isw	3	M1 for $3x + 2y = c$ or $y = -1.5x + c$ M1 for subst (2, 10) to find c or for or for $y - 10 =$ their gradient $\times (x - 2)$	3
4	(i) P ← Q	1	condone omission of P and Q	
	(ii) $P \Leftrightarrow Q$ x + 3(3x + 1) = 6 o.e.	1		2
5		M1	for subst <u>or</u> for rearrangement and multn to make one pair of coefficients the same <u>or</u> for both eqns in form ' <i>y</i> =' (condone one error)	
	10x = 3 or $10y = 19$ o.e.	A1	graphical cala: (must be an graph name)	
	(0.3, 1.9) or $x = 0.3$ and $y = 1.9$ o.e.	A1	graphical soln: (must be on graph paper) M1 for each line, A1 for (0.3, 1.9) o.e	
			cao; allow B3 for (0.3, 1.9) o.e.	3
6	-3 < x < 1	4	B3 for -3 and 1 or	
	[condone $x < 1$, $x > -3$]		M1 for $x^2 + 2x - 3$ [< 0]or $(x + 1)^2 < / = 4$	
			and M1 for $(x + 3)(x - 1)$ or $x = (-2 \pm 4)/2$	
			or for $(x + 1)$ and ± 2 on opp. sides of eqn	
			or inequality; if 0, then SC1 for one of $x < 1$, $x > -3$	
				4
7	(i) 28√6	2	1 for $30\sqrt{6}$ or $2\sqrt{6}$ or $2\sqrt{2}\sqrt{3}$ or $28\sqrt{2}\sqrt{3}$	
	(ii) 49 – 12√5 isw	3	2 for 49 and 1 for – 12√5 or M1 for 3	
			correct terms from $4 - 6\sqrt{5} - 6\sqrt{5} + 45$	5
8	20	2	0 for just 20 seen in second part; M1 for 6!/(3!3!) or better	
	-160 or ft for $-8 \times$ their 20	2	condone $-160x^3$; M1 for [-]2 ³ × [their] 20	
			seen or for [their] $20 \times (-2x)^3$; allow B1	4
	(:) 4/07	2	for 160	
9	(i) 4/27	2	1 for 4 or 27	
	3 _a 10 _b 8		2 for 3 'elements' correct, 1 for 2	
	(ii) $3a^{10}b^8c^{-2}$ or $\frac{3a^{10}b^8}{c^2}$	3	elements correct, -1 for any adding of	
	C^{-}		elements; mark final answer; condone	
	2 0 2 05		correct but unnecessary brackets	5
10	$x^2 + 9x^2 = 25$ $10x^2 = 25$	M1	for subst for x or y attempted or $x^2 = 2.5$ a.e. condens one error from	
	IUX = 25	M1	or $x^2 = 2.5$ o.e.; condone one error from start [allow $10x^2 - 25 = 0 + $ correct	
			substn in correct formula]	
	$x=\pm(\sqrt{10})/2 \text{ or.} \pm \sqrt{(5/2)} \text{ or } \pm 5/\sqrt{10} \text{ oe}$	A2	allow $\pm \sqrt{2.5}$; A1 for one value	
	$y = [\pm] \ 3\sqrt{(5/2)} \ \text{o.e. eg} \ y = [\pm] \ \sqrt{22.5}$	B1	ft 3 \times their x value(s) if irrational;	
			condone not written as coords.	5

Section B

Sect	IOII D	T			
11	i	grad AB = $8/4$ or 2 or $y = 2x - 10$	1	or M1 for $AB^2 = 4^2 + 8^2$ or 80 and	
		grad BC = $1/-2$ or $-\frac{1}{2}$ or	1	$BC^2 = 2^2 + 1^2$ or 5 and $AC^2 = 6^2 + 7^2$ or	
		•		85; M1 for $AC^2 = AB^2 + BC^2$ and 1 for	
		$y = -\frac{1}{2}x + 2.5$	1	[Pythag.] true so AB perp to BC;	
		product of grads = -1 [so perp]	'	if 0, allow G1 for graph of A, B, C	3
Ì		(allow seen or used)		I to, anow or for graph of 7t, b, o	
	ii	midpt E of AC = $(6, 4.5)$	1		
		$AC^2 = (9-3)^2 + (8-1)^2$ or 85	M1	allow seen in (i) only if used in (ii); or	
i		7.6 = (6 0) 1 (6 1) 61 66		$AE^2 = (9 - \text{their } 6)^2 + (8 - \text{their } 4.5)^2 \text{ or}$	
Ì		$rad = \frac{1}{2} \sqrt{85}$ o.e.	A1	$rad.^2 = 85/4$ o.e. e.g. in circle eqn	
			B2		
Ì		$(x-6)^2 + (y-4.5)^2 = 85/4$ o.e.	02	M1 for $(x-a)^2 + (y-b)^2 = r^2$ soi or for	
			4	Ihs correct	
Ì		$(5-6)^2 + (0-4.5)^2 = 1 + 81/4 = $	1	some working shown; or 'angle in	
		85/4]		semicircle [=90°]'	6
	iii	\longrightarrow (1)		\longrightarrow (-2)	
		$\overrightarrow{BE} = \overrightarrow{ED} = \begin{pmatrix} 1 \\ 4.5 \end{pmatrix}$	M1	o.e. ft their centre; or for $\overrightarrow{BC} = \begin{pmatrix} -2\\1 \end{pmatrix}$	
		(4.5)		(1)	
		D has coords (6 + 1, 4.5 + 4.5) ft	M1	or $(0-2,0)$ 1); condone mixtures of	
		or		or $(9-2, 8+1)$; condone mixtures of	
		(5+2,0+9)	A1	vectors and coords. throughout part iii	3
		= (7, 9)		allow B3 for (7,9)	
12	i	f(-2) used	M1	or M1 for division by $(x + 2)$ attempted	
		-8 + 36 - 40 + 12 = 0	A1	as far as $x^3 + 2x^2$ then A1 for $x^2 + 7x +$	
		0 1 30 40 1 12 = 0		6 with no remainder	2
	ii	divn attempted as far as $x^2 + 3x$	M1	or inspection with $b = 3$ or $c = 2$ found;	-
	· · ·	$x^2 + 3x + 2$ or $(x + 2)(x + 1)$	A1	B2 for correct answer	2
	iii	(x+2)(x+6)(x+1)	2	allow seen earlier;	_
		(x+2)(x+0)(x+1)	_	M1 for $(x + 2)(x + 1)$	2
	iv	akatah af auhia tha right way up	G1	, , , ,	-
Ì	IV	sketch of cubic the right way up		with 2 turning pts; no 3rd tp	
		through 12 marked on y axis	G1	curve must extend to $x > 0$	
		intercepts -6 , -2 , -1 on x axis	G1	condone no graph for $x < -6$	3
	V	$[x](x^2 + 9x + 20)$	M1	or other partial factorisation	
1		[x](x+4)(x+5)	M1		
1		x = 0, -4, -5	A1	or B1 for each root found e.g. using	
				factor theorem	3
13	i	y = 2x + 3 drawn on graph	M1		
ì		x = 0.2 to 0.4 and -1.7 to -1.9	A2	1 each; condone coords; must have	
Ī				line drawn	3
ì	ii	$1 = 2x^2 + 3x$	M1	for multiplying by x correctly	
		$2x^2 + 3x - 1 = 0$	M1	for correctly rearranging to zero (may	
				be earned first) or suitable step re	
				completing square if they go on	
		attempt at formula or completing	M1	ft, but no ft for factorising	
		square	1711	2., 5 00 110 10 101 100 1011115	
		I -			
		$x = \frac{-3 \pm \sqrt{17}}{4}$	A2	A1 for one soln	5
		4			
	iii	branch through (1,3),	1	and approaching $y = 2$ from above	
		branch through (-1,1),approaching			
		y = 2 from below	1	and extending below <i>x</i> axis	2
	iv	-1 and ½ or ft intersection of their	2	1 each; may be found algebraically;	_
	14		_		2
		curve and line [tolerance 1 mm]		ignore y coords.	