Paper 3: Statistics and Mechanics Mark Scheme

Question	Scheme	Marks	AOs
1(a)	Area $=8 \times 1.5=12 \mathrm{~cm}^{2}$ Frequency $=8$ so $1 \mathrm{~cm}^{2}=\frac{2}{3}$ hour (o.e.)	M1	3.1a
	Frequency of 12 corresponds to area of 18 so height $=18 \div 2.5=7.2(\mathrm{~cm})$	A1	1.1b
	Width $=5 \times 0.5=2.5(\mathrm{~cm})$	Blcao	1.1b
		(3)	
(b)	$[\bar{y}=] \frac{205.5}{31}=$ awrt 6.63	B1cao	1.1b
	$\begin{aligned} & {\left[\sigma_{y}=\right] \sqrt{\frac{1785.25}{31}-\bar{y}^{2}}=\sqrt{13.644641}=\text { awrt } 3.69} \\ & \text { allow }[s=] \sqrt{\frac{1785.25-31 \bar{y}^{2}}{30}}=\text { awrt } 3.75 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(3)	
(c)	Mean of Heathrow is higher than Hurn and standard deviation smaller suggesting Heathrow is more reliable	M1	2.4
	Hurn is South of Heathrow so does not support his belief	A1	2.2b
		(2)	
(d)	$\bar{x}+\sigma \approx 10.3$ so number of days is e.g. $\frac{(11-\text { "10.3") }}{3} \times 8(+5)$	M1	1.1b
	$=6.86$ so 7 days	A1	1.1b
		(2)	
(e)	[$H=$ no. of hours $] \quad \mathrm{P}(H>10.3)$ or $\mathrm{P}(Z>1)=[0.15865 \ldots]$	M1	3.4
	Predict $31 \times 0.15865 \ldots=4.9$ or 5 days	A1	1.1b
		(2)	
(f)	(5 or) 4.9 days $<$ (7 or) 6.9 days so model may not be suitable	B1	3.5a
		(1)	
(13 marks)			

Question 1 continued

Notes:

(a)

M1: for clear attempt to relate the area to frequency. Can also award if their height \times their width $=18$
A1: \quad for height $=7.2(\mathrm{~cm})$
(b)

M1: for a correct expression for σ or s, can ft their value for mean
A1: \quad awrt 3.69 (allow $s=3.75$)
(c)

M1: for a suitable comparison of standard deviations to comment on reliability.
A1: for stating Hurn is south of Heathrow and a correct conclusion
(d)

M1: for a correct expression - ft their $\bar{x}+\sigma \approx 10.3$
A1: for 7 days but accept 6 (rounding down) following a correct expression
(e)

M1: for a correct probability attempted
A1: for a correct prediction
(f)

B1: for a suitable comparison and a compatible conclusion

Question	Scheme	Marks	AOs
2(a)	e.g. It requires extrapolation so will be unreliable (o.e.)	B1	1.2
		(1)	
(b)	e.g. Linear association between w and t	B1	1.2
		(1)	
(c)	$\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho>0$	B1	2.5
	Critical value 0.5822	M1	1.1a
	Reject H_{0}		
	There is evidence that the product moment correlation coefficient is greater than 0	A1	2.2b
		(3)	
(d)	Higher \bar{t} suggests overseas and not Perth...lower wind speed so perhaps not close to the sea so suggest Beijing	B1	2.4
		(1)	
(6 marks)			
Notes:			
(a) B1: for a correct statement (unreliable) with a suitable reason			
(b) B1: for a correct statement			
(c) B1: for both hypotheses in terms of ρ M1: for selecting a suitable 5% critical value compatible with their H_{1} A1: for a correct conclusion stated			
(d) B1: for suggesting Beijing with some supporting reason based on t or w Allow Jacksonville with a reason based just on higher \bar{t}			

Question	Scheme	Marks	AOs
Q3(a)			
	$\mathrm{P}(L>50.98)=0.025$	B1cao	3.4
	$\therefore \frac{50.98-\mu}{0.5}=1.96$	M1	1.1b
	$\therefore \mu=50$	Alcao	1.1b
	$\mathrm{P}(49<L<50.75)$	M1	3.4
	$=0.9104 \ldots \quad$ awrt $\underline{0.910}$	Alft	1.1b
		(5)	
(b)	$S=$ number of strips that cannot be used so $S \sim \mathrm{~B}(10,0.090)$	M1	3.3
	$=\mathrm{P}(S \square 3)=0.991166 \ldots \quad$ awrt 0.991	A1	1.1b
		(2)	
(c)	$\mathrm{H}_{0}: \mu=50.1 \quad \mathrm{H}_{1}: \mu>50.1$	B1	2.5
	$\bar{X} \sim \mathrm{~N}\left(50.1, \frac{0.6^{2}}{15}\right)$ and $\bar{X}>50.4$	M1	3.3
	$\mathrm{P}(\bar{X}>50.4)=0.0264$	A1	3.4
	$p=0.0264>0.01$ or $z=1.936 \ldots<2.3263$ and not significant	A1	1.1b
	There is insufficient evidence that the mean length of strips is greater than 50.1	A1	2.2b
		(5)	
(12 marks)			

Question 3 continued

 Notes:

 Notes:}(a)
$\mathbf{1}^{\text {st }} \mathbf{M}$: for standardizing with μ and 0.5 and setting equal to a z value $(|z|>1)$
$\mathbf{2}^{\text {nd }}$ M1: for attempting the correct probability for strips that can be used
$\mathbf{2}^{\text {nd }} \mathbf{A 1 f t}$: awrt 0.910 (allow ft of their μ)
(b)

M1: for identifying a suitable binomial distribution
A1: awrt 0.991 (from calculator)
(c)

B1: hypotheses stated correctly
M1: for selecting a correct model (stated or implied)
$\mathbf{1}^{\text {st }} \mathbf{A 1}$: for use of the correct model to find $p=$ awrt 0.0264 (allow $z=$ awrt 1.94)
$\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for a correct calculation, comparison and correct statement
$\mathbf{3}^{\text {rd }} \mathbf{A 1}$:for a correct conclusion in context mentioning "mean length" and 50.1

Question	Scheme	Marks	AOs
4(a)	$\mathrm{P}\left(A^{\prime} \mid B^{\prime}\right)=\frac{\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)}{\mathrm{P}\left(B^{\prime}\right)}$ or $\frac{0.33}{0.55}$	M1	3.1a
	$=\frac{3}{5}$ or 0.6	A1	1.1b
		(2)	
(b)	$\begin{aligned} & \text { e.g. } \mathrm{P}(A) \times \mathrm{P}(B)=\frac{7}{20} \times \frac{9}{20}=\frac{63}{400} \neq \mathrm{P}(A \cap B)=0.13=\frac{52}{400} \\ & \text { or } \quad \mathrm{P}\left(A^{\prime} \mid B^{\prime}\right)=0.6 \neq \mathrm{P}\left(A^{\prime}\right)=0.65 \end{aligned}$	B1	2.4
		(1)	
(c)		B1	2.5
	B	M1	3.1a
		A1	1.1b
		M1	1.1b
		A1	1.1b
		(5)	
(d)	$\begin{aligned} & \mathrm{P}(B \cup C)^{\prime}=0.22+0.22 \text { or } 1-[0.56] \\ & \text { or } 1-[0.13+0.23+0.09+0.11] \end{aligned}$	M1	1.1b
	$=0.44$	A1	1.1b
		(2)	
(10 marks)			
Notes:			
(a) M1: for a correct ratio of probabilities formula and at least one correct value. A1: a correct answer			
(b) for a fully correct explanation: correct probabilities and correct comparison			
(c) B1: for box with B intersecting A and C but C not intersecting A. (Or accept three intersecting circles, but with zeros entered for $A \cap C$ and $A \cap B \cap C)$ No box is B0 M1: for method for finding $\mathrm{P}(B \cap C)$ A1: for 0.09 M1: for 0.13 and their 0.09 in correct places and method for their 0.23 A1: fully correct			
(d) M1: for a correct expression -ft their probabilities from their Venn diagram. A1: cao			

Question	Scheme	Marks	AOs
5 (a)	The seeds would be destroyed in the process so they would have none to sell	B1	2.4
		(1)	
(b)	[$S=$ no. of seeds out of 24 that germinate, $S \sim \mathrm{~B}(24,0.55)]$		
	$T=$ no. of trays with at least 15 germinating. $T \sim \mathrm{~B}(10, p)$	M1	3.3
	$p=\mathrm{P}(S \square 15)=0.299126 \ldots$	A1	1.1b
	So $\mathrm{P}(T \square 5)=0.1487 \ldots$ awrt $\underline{0.149}$	A1	1.1b
		(3)	
(c)	n is large and p close to 0.5	B1	1.2
		(1)	
(d)	$X \sim \mathrm{~N}(132,59.4)$	B1	3.4
	$\mathrm{P}(X \square 149.5)=\mathrm{P}\left(Z \geqslant \frac{149.5-132}{\sqrt{59.4}}\right)$	M1	1.1b
	$=0.01158 \ldots \quad$ awrt $\underline{\underline{0.0116}}$	Alcso	1.1b
		(3)	
(e)	e.g The probability is very small therefore there is evidence that the company's claim is incorrect.	B1	2.2b
		(1)	
(9 marks)			
Notes:			
(a) B1: cao			
(b) M1: for selection of an appropriate model for T $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for a correct value of the parameter p (accept 0.3 or better) $2^{\text {nd }} \mathbf{A 1}$: for awrt 0.149			
(c) B1: both correct conditions			
(d) B1: for correct normal distribution M1: for correct use of continuity correction A1: cso			
(e) B1: correct statement			

Question	Scheme	Marks	AOs
6	Integrate a w.r.t. time	M1	1.1a
	$\mathbf{v}=\frac{5 t^{2}}{2} \mathbf{i}-10 t^{\frac{3}{2}} \mathbf{j}+\mathbf{C}$ (allow omission of \mathbf{C})	A1	1.1b
	$\mathbf{v}=\frac{5 t^{2}}{2} \mathbf{i}-10 t^{\frac{3}{2}} \mathbf{j}+20 \mathbf{i}$	A1	1.1b
	When $t=4, \mathbf{v}=60 \mathbf{i}-80 \mathbf{j}$	M1	1.1b
	Attempt to find magnitude: $\sqrt{ }\left(60^{2}+80^{2}\right)$	M1	3.1 a
	Speed $=100 \mathrm{~m} \mathrm{~s}^{-1}$	Alft	1.1b
(6 marks)			
Notes:			
$\mathbf{1}^{\text {st }} \mathbf{M 1}$: for integrating a w.r.t. time (powers of t increasing by 1) $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for a correct \mathbf{v} expression without \mathbf{C} $\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for a correct \mathbf{v} expression including \mathbf{C} $\mathbf{2}^{\text {nd }} \mathbf{M} 1$: for putting $t=4$ into their \mathbf{v} expression $3^{\text {rd }} \mathbf{M} 1$: for finding magnitude of their \mathbf{v} $\mathbf{3}^{\text {rd }} \mathbf{A 1}$: $\mathbf{f t}$ for $100 \mathrm{~m} \mathrm{~s}^{-1}$, follow through on an incorrect \mathbf{v}			

Question	Scheme	Marks	AOs
7(a)	$R=m g \cos \alpha$	B1	3.1 b
	Resolve parallel to the plane	M1	3.1 b
	$-F-m g \sin \alpha=-0.8 m g$	A1	1.1 b
	$F=\mu R$	M1	1.2
	Produce an equation in μ only and solve for μ	M1	2.2a
	$\mu=\frac{1}{4}$	A1	1.1 b
		(6)	
(b)	Compare $\mu m g \cos \alpha$ with $m g \sin \alpha$	M1	3.1 b
	Deduce an appropriate conclusion	Al ft	2.2a
		(2)	
(8 marks)			
Notes:			
(a) B1: \quad for $R=m g \cos \alpha$ $\mathbf{1}^{\text {st }} \mathbf{M}$ 1: for resolving parallel to the plane $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for a correct equation $\mathbf{2}^{\text {nd }} \mathbf{M 1}$: for use of $F=\mu R$ $3^{\text {rd }}$ M1: for eliminating F and R to give a value for μ $2^{\text {nd }} \mathbf{A 1}$: for $\mu=\frac{1}{4}$			
(b) M1: comparing size of limiting friction with weight component down the plane A1ft: for an appropriate conclusion from their values			

Question	Scheme	Marks	AOs
8(a)	Use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t:(10.5 \mathbf{i}-0.9 \mathbf{j})=0.6 \mathbf{j}+15 \mathbf{a}$	M1	3.1 b
	$\mathbf{a}=(0.7 \mathbf{i}-0.1 \mathbf{j}) \mathrm{m} \mathrm{s}^{-2} \quad$ Given answer	A1	1.1b
		(2)	
(b)	Use of $\mathbf{r}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}$	M1	3.1b
	$\mathbf{r}=0.6 \mathbf{j} t+\frac{1}{2}(0.7 \mathbf{i}-0.1 \mathbf{j}) t^{2}$	A1	1.1b
		(2)	
(c)	Equating the \mathbf{i} and \mathbf{j} components of \mathbf{r}	M1	3.1b
	$\frac{1}{2} \leftarrow 0.7 t^{2}=0.6 t-\frac{1}{2} \leftarrow 0.1 t^{2}$	Alft	1.1b
	$t=1.5$	A1	1.1b
		(3)	
(d)	Use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t: \quad \mathbf{v}=0.6 \mathbf{j}+(0.7 \mathbf{i}-0.1 \mathbf{j}) t$	M1	3.1b
	Equating the \mathbf{i} and \mathbf{j} components of \mathbf{v}	M1	3.1b
	$t=0.75$	Al ft	1.1b
		(3)	
(10 marks)			
Notes:			
(a) M1: for use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t$ A1: for given answer correctly obtained			
M1: for use of $\mathbf{r}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}$ A1: for a correct expression for \mathbf{r} in terms of t			
(c) M1: for equating the \mathbf{i} and \mathbf{j} components of their \mathbf{r} A1ft: for a correct equation following their \mathbf{r} A1: \quad for $t=1.5$			
(d) M1: for use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t$ for a general t M1: for equating the \mathbf{i} and \mathbf{j} components of their \mathbf{v} A1ft: for $t=0.75$, or a correct follow through answer from an incorrect equation			

Question	Scheme	Marks	AOs
9(a)	Take moments about A (or any other complete method to produce an equation in $S, \mathrm{~W}$ and α only)	M1	3.3
	$W a \cos \alpha+7 W 2 a \cos \alpha=S 2 a \sin \alpha$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Use of $\tan \alpha=\frac{5}{2}$ to obtain S	M1	2.1
	$S=3 W^{*}$	A1*	2.2a
		(5)	
(b)	$R=8 W$	B1	3.4
	$F=\frac{1}{4} R(=2 W)$	M1	3.4
	$P_{\mathrm{MAX}}=3 W+F$ or $P_{\mathrm{MIN}}=3 W-F$	M1	3.4
	$P_{\mathrm{MAX}}=5 W$ or $P_{\mathrm{MIN}}=W$	A1	1.1 b
	$W \leq P \leq 5 W$	A1	2.5
		(5)	
(c)	$\mathrm{M}(A)$ shows that the reaction on the ladder at B is unchanged	M1	2.4
	also R increases (resolving vertically)	M1	2.4
	which increases max F available	M1	2.4
		(3)	
(13 marks)			

Question 9 continued
 Notes:

(a)
$\mathbf{1}^{\text {st }}$ M1: for producing an equation in $S, \mathrm{~W}$ and α only
$\mathbf{1}^{\text {st }} \mathbf{A 1}$: for an equation that is correct, or which has one error or omission
$\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for a fully correct equation
$\mathbf{2}^{\text {nd }} \mathbf{M} 1$: for use of $\tan \alpha=\frac{5}{2}$ to obtain S in terms of W only
$\mathbf{3}^{\text {rd }} \mathbf{A 1}$ *: for given answer $S=3 W$ correctly obtained
(b)

B1: \quad for $R=8 W$
$1^{\text {st }}$ M1: for use of $F=\frac{1}{4} R$
$\mathbf{2}^{\text {nd }} \mathbf{M 1}:$ for either $P=(3 W+$ their $F)$ or $P=(3 W-$ their $F)$
$\mathbf{1}^{\text {st }}$ A1: for a correct max or min value for a correct range for P
$\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for a correct range for P
(c)
$1^{\text {st }}$ M1: for showing, by taking moments about A, that the reaction at B is unchanged by the builder's assistant standing on the bottom of the ladder
$\mathbf{2}^{\text {nd }} \mathbf{M 1}$: for showing, by resolving vertically, that R increases as a result of the builder's assistant standing on the bottom of the ladder
$\mathbf{3}^{\text {rd }}$ M1: for concluding that this increases the limiting friction at A

Question	Scheme	Marks	AOs
10(a)	Using the model and horizontal motion: $s=u t$	M1	3.4
	$36=U t \cos \alpha$	A1	1.1b
	Using the model and vertical motion: $s=u t+\frac{1}{2} a t^{2}$	M1	3.4
	$-18=U t \sin \alpha-\frac{1}{2} g t^{2}$	A1	1.1b
	Correct strategy for solving the problem by setting up two equations in t and U and solving for U	M1	3.1b
	$U=15$	A1	1.1b
		(6)	
(b)	Using the model and horizontal motion: $U \cos \alpha$ (12)	B1	3.4
	Using the model and vertical motion: $v^{2}=(U \sin \alpha)^{2}+2(-10)(-7.2)$	M1	3.4
	$v=15$	A1	1.1b
	Correct strategy for solving the problem by finding the horizontal and vertical components of velocity and combining using Pythagoras: Speed $=\sqrt{ }\left(12^{2}+15^{2}\right)$	M1	3.1b
	$\sqrt{369}=19 \mathrm{~m} \mathrm{~s}^{-1}$ (2sf)	Al ft	1.1b
		(5)	
(c)	Possible improvement (see below in notes)	B1	3.5 c
	Possible improvement (see below in notes)	B1	3.5 c
		(2)	
(13 marks)			

Question 10 continued

Notes:

(a)
$\mathbf{1}^{\text {st }}$ M1: for use of $s=u t$ horizontally
$\mathbf{1}^{\text {st }} \mathbf{A 1}$: for a correct equation
$\mathbf{2}^{\text {nd }} \mathbf{M} 1$: for use of $s=u t+\frac{1}{2} a t^{2}$ vertically
$\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for a correct equation
$\mathbf{3}^{\text {rd }} \mathbf{M 1}$: for correct strategy (need both equations)
$2^{\text {nd }} \mathbf{A 1}$: for $U=15$
(b)

B1: for $U \cos \alpha$ used as horizontal velocity component
$\mathbf{1}^{\text {st }} \mathbf{M 1}$: for attempt to find vertical component
$\mathbf{1}^{\text {st }} \mathbf{A 1}$: for 15
$\mathbf{2}^{\text {nd }} \mathbf{M 1}$: for correct strategy (need both components)
$\mathbf{2}^{\text {nd }} \mathbf{A 1 f t}$: for $19 \mathrm{~m} \mathrm{~s}^{-1}$ (2sf) following through on incorrect component(s)
(c)

B1, B1: for any two of
e.g. Include air resistance in the model of the motion
e.g. Use a more accurate value for g in the model of the motion
e.g. Include wind effects in the model of the motion
e.g. Include the dimensions of the stone in the model of the motion

