Write your name here		
Surname	Othe	r names
Edexcel GCE	Centre Number	Candidate Number
Chemistr Advanced Subsidia Unit 1: The Core Pr	ary	mistry
Friday 9 January 2009 – A		Paper Reference
Time: 1 hour 15 minutes	5	6CH01/01

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar,
 - as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

edexcel

advancing learning, changing lives

N34410A ©2009 Edexcel Limited.

7/7/7/2/3

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠.
If you change your mind, put a line through the box ≅ and then mark your new answer with a cross ⊠.

- 1 Which equation represents the reaction for which the enthalpy change is the lattice energy of sodium fluoride, NaF?
 - $\square A \operatorname{Na}(s) + \frac{1}{2}F_2(g) \to \operatorname{Na}F(s)$
 - $\square \quad \mathbf{B} \quad \mathrm{Na}(\mathrm{g}) + \mathrm{F}(\mathrm{g}) \to \mathrm{NaF}(\mathrm{s})$
 - $\square \quad \mathbb{C} \quad \mathrm{Na}^{\scriptscriptstyle +}(g) + \mathrm{F}^{\scriptscriptstyle -}(g) \to \mathrm{NaF}(s)$
 - \square **D** Na(g) + $\frac{1}{2}F_2(g) \rightarrow \text{NaF}(s)$

(Total for Question 1 = 1 mark)

- **2** Theoretical lattice energies can be calculated from electrostatic theory. Which of the following affects the magnitude of the theoretical lattice energy of an alkali metal halide, M⁺X⁻?
 - A The first electron affinity of X.
 - **B** The first ionization energy of M.
 - C The enthalpy of atomization of M.
 - **D** The radius of the X^- ion.

(Total for Question 2 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

5 The standard enthalpy changes of combustion of carbon, hydrogen and methane are shown in the table below.

Substance	Standard enthalpy change of combustion / kJ mol ⁻¹
carbon, C(s)	-394
hydrogen, $H_2(g)$	-286
methane, $CH_4(g)$	-891

Which one of the following expressions gives the correct value for the standard enthalpy change of formation of methane in kJ mol⁻¹?

$$C(s) + 2H_2(g) \rightarrow CH_4(g)$$

- $\square A 394 + (2 \times 286) 891$
- **B** $-394 (2 \times 286) + 891$
- \Box C 394 + 286 891
- **D** −394 − 286 + 891

(Total for Question 5 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

		7
6 This question is about some standard enthalpy change	ges, ΔH^{\ominus}	
A enthalpy of reaction		L
B enthalpy of combustion		L
C mean bond enthalpy		L
D bond enthalpy		I
(a) Which enthalpy change is represented by p ?		
$CH_4(g) \rightarrow CH_3(g) + H(g)$ $\Delta H^{\ominus} = p$	(1)	I
A		l
B		l
C C		l
D		ł
		ł
(b) Which enthalpy change is represented by q ?		ł
$CH_4(g) \rightarrow C(g) + 4H(g)$ $\Delta H^{\ominus} = 4q$	(1)	
	(1)	
—		ł
B B		
		ł
\square D		ł
(c) Which enthalpy change is represented by r ?		l
$H_2C = CH_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2C - CH_2(g)$	$\Delta H^{\ominus} = r$	l
$H_2C = CH_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2C - CH_2(g)$	(1)	ł
		l
B		
\Box C		
\square D		
	(Total for Question 6 = 3 marks)	

 \neg

7 Given the following data: $\Delta H_{\rm f}^{\ominus}$ [FeO(s)] = -270 kJ mol⁻¹ $\Delta H_{\rm f}^{\ominus}[{\rm Fe}_{2}{\rm O}_{3}({\rm s})] = -820 \, \rm kJ \, mol^{-1}$ select the expression which gives the enthalpy change, in kJ mol⁻¹, for the reaction: $2\text{FeO}(s) + \frac{1}{2}O_2(g) \rightarrow \text{Fe}_2O_3(s)$ \square A $(-820 \times \frac{1}{2}) + 270 = -140$ **B** $(+820 \times \frac{1}{2}) - 270 = +140$ \times **C** $-820 + (270 \times 2) = -280$ X $\mathbf{D} + 820 - (270 \times 2) = +280$ X (Total for Question 7 = 1 mark) 8 An organic compound contains 38.4 % carbon, 4.80 % hydrogen and 56.8 % chlorine by mass. What is the empirical formula of the compound? A C,H,Cl X B CH₃Cl X $C C_2H_5Cl$ X **D** $C_3H_5Cl_3$ X (Total for Question 8 = 1 mark) Use this space for any rough working. Anything you write in this space will gain no credit.

- \square A 2 moles of water, H₂O
- \square **B** 1.5 moles of ammonia, NH₃
- \square C 1 mole of hydrogen gas, H₂
- \square **D** 0.5 moles of methane, CH₄

(Total for Question 9 = 1 mark)

10 Magnesium oxide reacts with dilute hydrochloric acid according to the following equation.

$$MgO(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2O(l)$$

How many **moles** of magnesium oxide, MgO, are required to neutralize 20 cm³ of 0.50 mol dm⁻³ hydrochloric acid, HCl?

- A 0.0010
- **■ B** 0.0050
- **C** 0.010
- **D** 0.020

(Total for Question 10 = 1 mark)

11 Hydrogen and oxygen react according to the following equation.

$$2\mathrm{H}_2(\mathrm{g}) + \mathrm{O}_2(\mathrm{g}) \rightarrow 2\mathrm{H}_2\mathrm{O}(\mathrm{g})$$

If all volumes are measured at 110 °C and one atmosphere pressure, the volume of steam produced after 50 cm³ of hydrogen react completely with 25 cm³ of oxygen is

- \square A 25 cm³
- \blacksquare **B** 50 cm³
- \Box C 75 cm³
- **D** 100 cm^3

(Total for Question 11 = 1 mark)

12 Hydrogen peroxide decomposes on heating as follows:

 $2H_2O_2 \rightarrow 2H_2O + O_2$

What mass of hydrogen peroxide is required to give 16 g of oxygen gas?

- 🖾 A 8.5 g
- **■ B** 17 g
- 🖸 C 34 g
- **D** 68 g

(Total for Question 12 = 1 mark)

13 The equation for the dehydration of cyclohexanol, $C_6H_{11}OH$, to cyclohexene, C_6H_{10} is:

 $\mathrm{C_6H_{11}OH} \rightarrow \mathrm{C_6H_{10}} + \mathrm{H_2O}$

50.0 g of cyclohexanol produced 32.8 g of cyclohexene.

[Molar masses / $g \mod^{-1}$: cyclohexanol = 100; cyclohexene = 82]

Calculate the percentage yield of cyclohexene.

- A 32.8 %
- **■ B** 40.0 %
- C 65.6 %
- **D** 80.0 %

(Total for Question 13 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

×	D Five (Total for Question 14 = 1 mark)	
15 In a m	lecule of ethene, C_2H_4 , how many π (pi) bonds are present?	
	A One	
	B Two	
	C Three	
	D Four	
	(Total for Question 15 = 1 mark)	
16 The m	chanism of the reaction represented by the equation	
	$\mathrm{C_2H_4} + \mathrm{Br_2} \rightarrow \mathrm{CH_2BrCH_2Br}$	
is an e	ample of	
\square	A Free radical substitution	
\times	B Free radical addition	
\square	C Electrophilic substitution	
	D Electrophilic addition	
	(Total for Question 16 = 1 mark)	

Answer ALL the questions. Write your answers in the spaces (a) (i) Complete the electronic configuration of the magnesium atom. (ii) Complete the electronic configuration of the chlorine atom.	provided. (1)
5 ²	(1)
(ii) Complete the electronic configuration of the chlorine atom	
(ii) complete the electronic configuration of the emornic atom.	(1)
2	
(b) (i) Write the equation, including state symbols, for the reaction of magn chlorine.	esium with
	(2)
(ii) Name the type of bonding present in magnesium chloride.	(1)
	(1)
(iii) Draw a diagram (using dots or crosses) to show the bonding in	
magnesium chloride. Include ALL the electrons in each species and present.	the charges
	(3)

(c) State the type of bonding that exists in solid magnesium.	(1)
 *(d) Explain fully why the melting temperature of magnesium is higher than that of sodium. 	(3)
(Total for Question 19 = 12 m	arks)

(i)	Describe briefly how positive ions are spectrometer.	formed from gaseous atoms i	n a mass
	spectrometer.		(2
(ii)	What is used to accelerate the positive	ions in a mass spectrometer?	(1
(iii)) What is used to deflect the positive ior	ns in a mass spectrometer?	(1
	e following data were obtained from the	mass spectrum of a sample o	
	e following data were obtained from the Mass/charge ratio	mass spectrum of a sample o % abundance	
	e following data were obtained from the Mass/charge ratio 50.0	mass spectrum of a sample o % abundance 4.3	
	e following data were obtained from the Mass/charge ratio	mass spectrum of a sample o % abundance	

(2)

(c) Explain why the four isotopes of chromium behave identically in chemical reactions.	(1)
(d) In which block of the Periodic Table is chromium found?	(1)
(Total for Question 20 = 8 mar	rks)
21 (a) Define the term first ionization energy .	(3)
(b) Write an equation, with state symbols, to illustrate the process occurring when the second ionization energy of sodium is measured.	(2)
	(-)

*(ii	Explain why the first ionization energies genera sodium to argon (Na to Ar).	ally increase across the period	(3)
*(ii) Explain why the first ionization energy of alum	inium is less than that of	
	magnesium.		(2)
(d) Pl	the following species $S^+ = S = S^-$		
in	S^+ S S^- order of increasing first ionization energy, starting	g with the lowest.	(1)
	west first ization energy	Highest first ionization energy	(1)

23 The standard enthalpy change, ΔH_1^{\ominus} , for the decomposition of potassium hydrogenearbonate, KHCO₃, is impossible to determine directly.

$$2KHCO_3(s) \rightarrow K_2CO_3(s) + CO_2(g) + H_2O(l)$$

The value of ΔH_1^{\oplus} can be calculated from the standard enthalpy changes which accompany the reactions below:

 $\text{KHCO}_3(s) + \text{HCl}(aq) \rightarrow \text{KCl}(aq) + \text{CO}_2(g) + \text{H}_2\text{O}(l) \qquad \Delta H_2^{\ominus}$

 $K_2CO_3(s) + 2HCl(aq) \rightarrow 2KCl(aq) + CO_2(g) + H_2O(l) \qquad \Delta H_3^{\ominus}$

Procedure:

- The solids were added to separate 30 cm³ portions of dilute hydrochloric acid. The acid was in excess for both solids.
- The maximum temperature change for each experiment was noted.

Results:

• The following results were obtained with KHCO₃(s).

Mass of KHCO₃ used = 2.00 g

Temperature change = -4.9 °C

• The experiment with $K_2CO_3(s)$ gave a ΔH_3^{\ominus} value of -34 kJ mol^{-1} .

Assumption:

• The dilute hydrochloric acid solution has a density of 1 g cm⁻³.

(a) (i)	Calculate the heat energy absorbed, in joules, by the reaction of the $KHCO_3(s)$ with the solution of dilute hydrochloric acid. Use the expression energy absorbed (J) = mass of solution × 4.18 × temperature change	(1)
(ii)	Calculate the number of moles of $KHCO_3(s)$ used. Assume that the molar mass of $KHCO_3(s)$ is 100 g mol ⁻¹ .	(1)
(iii)	Use your answers to (a)(i) and (ii) to calculate, in kJ mol ⁻¹ , the enthalpy change when one mole of KHCO ₃ (s) reacts completely with the acid (i.e. ΔH_2^{\oplus}). Include a sign in your answer.	(2)

-

		(Total for Question 23 = 10 ma	rks)
(ii)	Suggest a piece of apparatus that of dilute hydrochloric acid more	t could have been used to measure the volume accurately in this experiment.	(1)
	Measuring cylinder		
	Balance		
(i)	Calculate the maximum percenta of apparatus in the KHCO ₃ (s) ex	age error in using each of the following pieces periment:	(2)
	Measuring cylinder ± 0.5 c	2m ³	
	Balance ± 0.01	g	

(e) An equation for the reaction between methane and chlorine is:

 $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$

The reaction occurs in the presence of ultraviolet (UV) light via a free-radical chain mechanism.

The initiation step is $Cl_2 \rightarrow 2Cl$.

The next step could be

EITHER	$CH_4 + Cl \bullet \rightarrow \bullet CH_3 + HCl$	(Step A)
OR	$CH_4 + Cl \bullet \rightarrow CH_3Cl + H \bullet$	(Step B)

(i) Use the following data to calculate a value for the enthalpy change for each of the Steps, **A** and **B**.

(3)

Bond	Mean bond enthalpy / kJ mol ⁻¹
С – Н	+ 413
C – Cl	+ 346
H – Cl	+ 432

Enthalpy change for Step A $CH_4 + Cl \cdot \rightarrow \cdot CH_3 + HCl$

Answer kJ mol⁻¹

Enthalpy change for Step B $CH_4 + Cl \cdot \rightarrow CH_3Cl + H \cdot$

Answer		kJ	mol^{-1}
1 1110 11 01	•••••••••••••••••	110	11101

(ii) Use your answer to (i) to justify which of the Steps, **A** or **B**, is the more likely.

(1)

(f) Another halogenoalkane, bromomethane, CH₃Br, is a toxic gas used to protect plants against insects. Health and Safety advice states that concentrations above 5 parts per million (ppm) by volume of this gas are harmful. A research laboratory contains 2.5×10^5 dm³ of air. Calculate the maximum volume of bromomethane, in dm³, allowed in the laboratory to comply with the advice given. (1) (Total for Question 24 = 11 marks) **TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS**

BLANK PAGE

BLANK PAGE

BLANK PAGE

	_												ç	_			Τ_			1								
0 (8)	(0) 0 (18)	4.0 H	helium	~	20.2	Ne	10 10	39.9	Ar	argon 18	83.8	Y	krypton 36	131.3	Xe	xenon 54	[222]	R	radon 86		ted	_						
٢			ĺ	(17)	19.0	LL ;	fluorine 9	35.5	บ	chlorine 17	79.9	Br	bromine 35	126.9	_	iodine 53	[210]	At	astatine 85		oeen repor	4 7 E		Lu lutetium 71	[257]	ֺׅׅׅׅׅׅׅׅׅׅ֕֕֕֕֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬֬	lawrencium	
Ŷ	5			(16)	16.0	0	oxygen 8	32.1	S	sulfur 16	79.0	Se	selenium 34	127.6	Te	tellurium 52	[209]	Ро	polonium 84		116 have l nticated	172	ר ב ג	ytterbium 70	[254]	No.	nobelium	
Ľ	ר		Ĺ	(15)	14.0	Z	nitrogen 7	31.0	٩	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		tomic numbers 112-116 hav but not fully authenticated	140	6 6	thulium 69	[256]	ΡW	mendelevium	
4	r			(14)	12.0	U	carbon 6	28.1		silicon 14	72.6	Ge	germanium 32	118.7	Sn	tin 20	207.2	Pb	lead 82		atomic nur but not fi	147) 1	erbium 68	[253]		fermium	
~	ר			(13)	10.8	œ	boron 5	27.0	AI	aluminium 13	69.7		gallium 31	114.8	<u>_</u>	indium 49	204.4	Ħ	thallium 81	1	Elements with atomic numbers 112-116 have been reported but not fully authenticated	145		holmium 67	[254]	្ល	einsteinium	
								<u>.</u>		(12)	65.4	Zn	zinc 30	112.4	PC	cadmium 48	200.6	Нg	mercury 80		Elem	14.2	<u>a</u>	dysprosium 66	[251]	ູຊຸ	californium einsteinium	
									(11)	63.5	CL	copper 29	107.9	Ag	silver 47	197.0	ΡN	gold 79	[272]	Rg roentgenium 111	150		F	[245]		berkelium o		
5										(10)	58.7	Ż	nickel 28	106.4	РЧ	palladium 46	195.1	Pt	platinum 78	[271]	Ę	157		gadolinium 64	[247]	с С	aurium	
										(6)	58.9	ပိ	cobalt 27	102.9	Rh	rhodium 45	192.2	<u>_</u>	iridium 77	[268]	E	152		Ē	[243]	A A A	americium	
	1.0 hydrogen	hydrogen 1							(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	SO	osmium 76	[277]	<u>_</u>	150	<u>s</u>	E	[242]		plutonium		
				_						(2)	54.9	Mn	nanganese 25	[98]	Гс	technetium 43	186.2	Re	rhenium 75	[264]	bohrium 107	1471		oromethium 61	[237]	dN	neptunium	
-				mass	loc	umber			(9)	52.0	ե	chromium manganese 24 25	95.9	Wo	molybdenum technetium 42 43	183.8	>	tungsten 74	[266]	Sg seaborgium 106	177		neodymium p 60	238		uranium		
				Kev	key	relative atomic mass	atomic symbol	atomic (proton) number			(5)	50.9		vanadium 23	92.9		niobium r 41	180.9	Ta	tantalum 73	[262]	E	1	Èà	praseodymium neodymium promethium 59 60 61	[231]	Pa	protactinium
			relativ	atoi	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ηf	hafnium 72	[261]	Ę			-	232		thorium			
										(3)	45.0	Sc	scandium 21	88.9		yttrium 39	138.9	La*	lanthanum 57	[227]	F		Ň		1			
ç	4		į	(2)	9.0	Be	beryllium 4	24.3	Mg	magnesium 12	40.1		calcium 20	87.6	Sr	strontium 38	137.3	Ba	c	[226]	Ra radium 88	1	* Lanthanide series	* Actinide series				
Ŧ	-			(E)	6.9		3 Ithium	23.0		11 n	39.1	×	potassium 19	85.5		s 137	132.9	S	caesium 55	[223]	Fr francium 87		* Lantha	* Actinid				

