Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination January 2011

Chemistry

CHEM1

Unit 1 Foundation Chemistry

Thursday 13 January 2011 9.00 am to 10.15 am

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a calculator.

Time allowed

• 1 hour 15 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- The Periodic Table/Data Sheet is provided as an insert.
- Your answers to the questions in Section B should be written in continuous prose, where appropriate.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use accurate scientific terminology.

Advice

 You are advised to spend about 50 minutes on Section A and about 25 minutes on Section B.

Section A

Answer all questions in the spaces provided.

- 1 Water can be found as ice, water and steam.
- **1 (a)** The following diagram shows the arrangement of some of the water molecules in a crystal of ice.

with reference to than water.	o the structure sho	own above give	one reason why	ice is less dens	е
				(1)	mark)

1 (b) Water and methane have similar relative molecular masses and both contain the element hydrogen.

The table below gives some information about water and methane.

	H ₂ O	CH ₄
<i>M</i> _r	18.0	16.0
Melting point / K	273	91

1 (b) (l)	in the ice crystal.	ter molecules together
		(1 mark)

1	(b) (ii)	State the strongest type	of	intermolecular	force	in	methane.

	(1 mark)

1 (b) (iii)	Give one reason why the melting point of ice is higher than the melting point of methane.
	(1 mark)
1 (c)	A molecule of H_2O can react with an H^+ ion to form an H_3O^+ ion.
1 (c) (i)	Draw and name the shape of the H ₃ O ⁺ ion. Include any lone pairs of electrons.
	Shape of the H ₃ O ⁺ ion
	Name of shape
	(2 marks)
1 (c) (ii)	Suggest a value for the bond angle in the H ₃ O ⁺ ion.
	(1 mark)
1 (c) (iii)	Identify one molecule with the same number of atoms, the same number of electrons and the same shape as the $\rm H_3O^+$ ion.
	(1 mark)
1 (d)	Water can also form the hydroxide ion. State the number of lone pairs of electrons in the hydroxide ion.
	(1 mark)

2	Indium is in Group 3 in the Periodic Table and exists as a mixture of the isotopes ¹¹³ In and ¹¹⁵ In.	
2 (a)	Use your understanding of the Periodic Table to complete the electron configuration of indium. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶	
	(1 mark))
2 (b)	A sample of indium must be ionised before it can be analysed in a mass spectrometer.	
2 (b) (i)	State what is used to ionise a sample of indium in a mass spectrometer.	
	(1 mark)
2 (b) (ii)	Write an equation, including state symbols, for the ionisation of indium that requires the minimum energy.	
	the millimum energy.	
	(1 mark))
2 (b) (iii)	State why more than the minimum energy is not used to ionise the sample of indium.	
	(1 mark))
2 (b) (iv)	Give two reasons why the sample of indium must be ionised.	
	Reason 1	
	Reason 2	
	(2 marks))

2 (c)	A mass spectrum of a sample of indium showed two peaks at $m/z = 113$ and $m/z = 115$. The relative atomic mass of this sample of indium is 114.5
2 (c) (i)	Give the meaning of the term relative atomic mass.
	(2 marks)
2 (c) (ii)	Use these data to calculate the ratio of the relative abundances of the two isotopes.
	(2 marks)
	(Extra space)
2 (d)	State and explain the difference, if any, between the chemical properties of the isotopes ¹¹³ In and ¹¹⁵ In
	Difference in chemical properties
	Explanation
	(2 marks)
2 (e)	Indium forms a compound X with hydrogen and oxygen. Compound X contains 69.2% indium and 1.8% hydrogen by mass. Calculate the empirical formula of compound X .
	(3 marks)

3	(a)	equation.
		$M_2CO_3(aq) + 2HCl(aq) \longrightarrow 2MCl(aq) + CO_2(g) + H_2O(l)$
		A 3.44 g sample of M_2CO_3 was dissolved in distilled water to make $250\mathrm{cm}^3$ of solution. A $25.0\mathrm{cm}^3$ portion of this solution required $33.2\mathrm{cm}^3$ of $0.150\mathrm{mol}~\mathrm{dm}^{-3}$ hydrochloric acid for complete reaction.
3	(a) (i)	Calculate the amount, in moles, of HCl in 33.2 cm ³ of 0.150 mol dm ⁻³ hydrochloric acid. Give your answer to 3 significant figures.
		(1 mark)
3	(a) (ii)	Calculate the amount, in moles, of $\rm M_2CO_3$ that reacted with this amount of HCl. Give your answer to 3 significant figures.
		(1 mark)
3	(a) (iii)	Calculate the amount, in moles, of $\rm M_2CO_3$ in the 3.44 g sample. Give your answer to 3 significant figures.
		(1 mark)
3	(a) (iv)	Calculate the relative formula mass, $M_{\rm r}$, of M ₂ CO ₃ Give your answer to 1 decimal place.
		(1 mark)
3	(a) (v)	Hence determine the relative atomic mass, $A_{\rm r}$, of the metal M and deduce its identity.
		<i>A</i> _r of M
		Identity of M
		(2 marks)

3 (b)	In another experiment, 0.658mol of CO_2 was produced. This gas occupied a volume of 0.0220m^3 at a pressure of 100kPa . Calculate the temperature of this CO_2 and state the units. (The gas constant $R = 8.31 \text{J K}^{-1} \text{mol}^{-1}$)
	(3 marks)
3 (c)	Suggest one possible danger when a metal carbonate is reacted with an acid in a sealed flask.
	(1 mark)
3 (d)	In a different experiment, 6.27 g of magnesium carbonate were added to an excess of sulfuric acid. The following reaction occurred.
	$MgCO_3 + H_2SO_4 \longrightarrow MgSO_4 + CO_2 + H_2O$
3 (d) (i)	Calculate the amount, in moles, of MgCO ₃ in 6.27 g of magnesium carbonate.
	/2 magula)
3 (d) (ii)	$\label{eq:calculate} \textit{(2 marks)}$ Calculate the mass of MgSO $_4$ produced in this reaction assuming a 95% yield.
	(3 marks)

15

4	Cetane (C ₁₆ H ₃₄) is a major component of diesel fuel.	
4 (a)	Write an equation to show the complete combustion of cetane.	
	(1 ma	 rk)
4 (b)	Cetane has a melting point of 18 °C and a boiling point of 287 °C. In polar regions vehicles that use diesel fuel may have ignition problems. Suggest one possible cause of this problem with the diesel fuel.	
		••••
	(1 ma	 rk)
4 (c)	The pollutant gases NO and NO_2 are sometimes present in the exhaust gases of vehicles that use petrol fuel.	
4 (c) (i)	Write an equation to show how NO is formed and give a condition needed for its formation.	
	Equation	
	Condition	ks)
4 (c) (ii)	Write an equation to show how NO is removed from the exhaust gases in a catalytic converter. Identify a catalyst used in the converter.	
	Equation	
	Catalyst	
	(2 mari	ks)
4 (c) (iii)	Deduce an equation to show how NO_2 reacts with water and oxygen to form nitric acid (HNO ₃).	
	(1 ma	 rk)

4 (d)	Cetane (C ₁₆ H ₃₄) can be cracked to produce hexane, butene and ethene.	
4 (d) (i)	State one condition that is used in this cracking reaction.	
	(1 mark)	
4 (d) (ii)	Write an equation to show how one molecule of cetane can be cracked to form hexane, butene and ethene.	
	(1 mark)	
4 (d) (iii)	State one type of useful solid material that could be formed from alkenes.	
	(1 mark)	
	(* ************************************	

10

Turn over for the next question

Section B

Answer all questions in the spaces provided.

5	The following	table gives	the melting	points of	some	elements ir	n Period 3.
---	---------------	-------------	-------------	-----------	------	-------------	-------------

Element	Na	Al	Si	Р	S
Melting point / K	371	933	1680	317	392

5 (a)		type of struct							
	(Extra sp	ace)							(3 marks)
5 (I)									
5 (b)		type of struct why the melting							phosphorus.
5 (b)			g point of s	ulfur is h	nigher th	nan the	melting	point of p	phosphorus.
5 (b)			g point of s	ulfur is h	nigher th	nan the	melting	point of p	
5 (b)			g point of s	ulfur is h	nigher th	nan the	melting	point of p	
5 (b)	Explain v		g point of s	ulfur is h	igher th	nan the	melting	point of p	
5 (b)	Explain v	vhy the melting	g point of s	ulfur is h	igher th	nan the	melting	point of p	
5 (b)	Explain v	vhy the melting	g point of s	ulfur is h	nigher th	nan the	melting	point of p	
5 (b)	Explain v	vhy the melting	g point of s	ulfur is h	nigher th	nan the	melting	point of p	

5 (c)	Draw a diagram to show how the particles are arranged in aluminium and explain why aluminium is malleable. (You should show a minimum of six aluminium particles arranged in two dimensions.)	
	(3 marks)	
	(Extra space)	
5 (d)	Explain why the melting point of aluminium is higher than the melting point of sodium.	
	(3 marks)	
	(Lxtra Space)	1

6	Octane is the eighth member of the alkane homologous series.	
6 (a)	State two characteristics of a homologous series.	
		(2 marks)
	(Extra space)	
6 (b)	Name a process used to separate octane from a mixture containing several di alkanes.	fferent
		(1 mark)

6 (c) The structure shown below is one of several structural isomers of oct	6 (c)	6	(C)	The structure s	hown below is	one of several	structural is	omers of	octane.
---	-------	---	-----	-----------------	---------------	----------------	---------------	----------	---------

	Name this isomer and state its empirical formula.
	(4 marks)
	(Extra space)
C (-1)	
6 (d)	Suggest why the branched chain isomer shown above has a lower boiling point than octane.
	(2 marks)

_

END OF QUESTIONS

