F334 Chemistry of Materials

Question	Expected Answers	Marks	Additional Guidance
1 (a)	2-hydroxypropanoic acid $\checkmark \checkmark$	2	mark independently 2-hydroxy DO NOT ALLOW hydroxyl propanoic acid ALLOW if propan- and -oic are separated.
(b) (i)	(enantiomers are) isomers whose structures are mirror images of one another \checkmark and are non-superimposable	2	mark independently mirror images non-superimposable IGNORE references to 4 different groups around a C atom, optical isomerism, various chiral words \& rotation of plane polarised light
(ii)		2	3D structure correct for one isomer \checkmark DO NOT ALLOW 90 or 180 degree angles between the two bonds in the plane of the paper mirror-image correct (must have 4 bonds around the C) \checkmark ALLOW ecf for non 3D structure with four different groups only IGNORE the way the groups are bonded to carbon eg -OH or - HO , same for $\mathrm{COOH} \& \mathrm{CH}_{3}$
(c) (i)	$\begin{aligned} & P=C \\ & Q=A \\ & R=B \end{aligned}$	1	

Question	Expected Answers	Marks	Additional Guidance
(ii)	$\mathrm{P}=(\mathbf{C})$ does not fizz / does not react / with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ AND so no - COOH group present / AW \checkmark Q = no phenol group (in A), so FeCl_{3} remains yellow / AW \checkmark $\mathrm{R}=(\mathrm{B}$ has) both phenol \& carboxylic acid (COOH) (so will turn FeCl_{3} purple and will fizz with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ / / AW \checkmark The words in brackets are only needed if tests not discussed for P \& Q.	3	if answers to (i) are incorrect/no response award 1 mark for correct answers for having both tests for phenol and carboxylic acid: ie: purple solution $=$ phenol AND acids fizz with carbonate \checkmark IGNORE P is \mathbf{C} as it turns FeCl_{3} purple IGNORE Q is \mathbf{A} as it fizzes \& is therefore a carboxylic acid
(d)	C because: (broad) peak at around $3250\left(\mathrm{~cm}^{-1}\right)$ indicates alcohol or phenol / OH / hydroxyl group no peak at 1700-1725 (cm^{-1}) so no $\underline{\mathrm{C}=\mathrm{O}}$ (in -COOH) present	3	IGNORE any reference to carboxylic acid for the 3250 peak ALLOW a range around 3250 Peaks may be identified on the diagram IGNORE all other peaks
(e) (i)	nucleophilic addition $\checkmark \checkmark$	2	nucleophilic addition mark independently

Question	Expected Answers	Marks	Additional Guidance
(ii)		4	'curly' arrow showing attack by ${ }^{-} \mathrm{CN}$ at $\mathrm{C}=\mathrm{O}$ carbon DO NOT ALLOW arrow starting from N of ${ }^{-} \mathrm{CN} /$ singleheaded arrows but give 1 mark if both are single headed but otherwise correct $\mathrm{C}=\mathrm{O}$ bond polarised correctly \checkmark curly arrow showing movement of double bond final structure correct ALLOW any correct structural formula not just skeletal O MUST be -ve IGNORE any further reaction showing O^{-}gaining H^{+}
(iii)	the rate determining step (slow step) does not involve water \checkmark (since) water does not appear in the rate equation / water is zero order \checkmark Since water / H+ required to form product it must react in a subsequent (fast) step/there must be at least 2 steps in the reaction / AW \checkmark OR the rate determining step (slow step) only involves ethanal \& cyanide (because only) ethanal \& cyanide appear in the rate equation and so water must react in a subsequent step \checkmark	3	

Question	Expected Answers	Marks	Additional Guidance
(f) (i)	reaction 1.1 has a higher atom economy than reaction $1.2 \checkmark$	$\mathbf{2}$	ALLOW comparison of percentage atom economy eg reaction 1.1 has 100\% economy, reaction 1.2 does not. because it is an addition reaction / only one product is formed whereas in reaction 1.2 hydrolysis / condensation occurs / atoms are wasted / lost / two 'products' are formed / co-products are also formed / AW \checkmark

Question	Expected Answers	Marks	Additional Guidance
2 (a)	Fe^{3+} will oxidise Cu / ORA OR Cu loses electrons to form $\mathrm{Cu}^{2+} /$ ORA \checkmark because electrode potential of $\mathrm{Fe}^{3+} I\left(\mathrm{Fe}^{2+}\right)$ is more positive / ORA (involves the Copper half-cell) OR Uses $\mathrm{E}_{\text {cell }}$ calculation to show reaction is feasible \checkmark $\mathrm{Cu}+2 \mathrm{Fe}^{3+} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{Fe}^{2+} \checkmark$	3	ALLOW Fe(III) and $\mathrm{Cu}(\mathbf{I I})$ DO NOT ALLOW electronegativity or higher / lower or larger / smaller IGNORE state symbols
(b) (i)	Pt electrode for $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ half cell in $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ Cu electrode in Cu^{2+} salt bridge labelled and in solutions conditions: $1 \mathrm{~mol} \mathrm{dm}^{-3}$ and $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$	5	ALLOW CuSO 4 etc. instead of Cu^{2+} ALLOW 1 molar / 1M
(ii)	$0.43 \mathrm{~V} \checkmark$	1	IGNORE any sign
(c) (i)	Copper(I) iodide \checkmark	1	DO NOT ALLOW copper iodide ALLOW Copper I iodide

Question	Expected Answers	Marks	Additional Guidance
(ii)	1. moles of thiosulfate $=0.200 \times(20.5 / 1000)=\mathbf{0 . 0 0 4 1}$ 2. (moles of iodine $\left(\mathrm{I}_{2}\right)=0.5 \times$ answer from 1 (0.0041) and moles of $\mathrm{Cu}^{2+}(\mathrm{aq})$ in $25.0 \mathrm{~cm}^{3}=2 \times 0.5 \mathrm{x}$ answer from $1(0.0041)$) $=0.0041$ 3. moles of $\mathrm{Cu}^{2+}(\mathrm{aq})$ in $250 \mathrm{~cm}^{-3}=10 \mathrm{x}$ answer from $1(0.0041)=0.0410 \checkmark$ 4. mass of Cu in coin = answer from 3 (0.0410) $x 63.5=2.6035 \mathrm{~g} \checkmark$ 5. \% of Cu in coin $=($ answer from $4(2.6035) / 3.47)$ $\times 100=75.0$ 6. (3 sig. figs.)	6	75.0 with no / incomplete working scores 6 marks. The marks are awarded for the working out given in bold: If final answer is incorrect please annotate marks given with ticks AND crosses where errors have occurred eg missing out step 3. 1. moles of thiosulfate $=0.0041$ moles 2. correct moles of $\mathrm{Cu}^{2+}(\mathrm{aq})$ in $25.0 \mathrm{~cm}^{3}$ ecf from 1 3. moles of $\mathrm{Cu}^{2+}(\mathrm{aq})$ in $250 \mathrm{~cm}^{-3}=10 \times$ moles of thiosulfate 4. mass of Cu in coin $=$ moles of $\mathrm{Cu}^{2+}(\mathrm{aq})$ in $250 \mathrm{~cm}^{-3}$ x 63.5 5. \% of Cu in coin $=$ mass of Cu in coin $\times 100 \checkmark$ 6. correct/incorrect answer MUST be given to 3 sig figs. Steps 3 \& 4 may be in a different order
(d) (i)	(transmits) Blue $\mathrm{Cu}^{2+}(\mathrm{aq})$ absorb red / orange light QWC - absorb(s) / absorbing / absorption / absorbance / absorbed One of these words has to be used to gain the second mark and spelling must be correct	2	IGNORE pale, deep or light etc. referring to blue, reflects DO NOT ALLOW green ALLOW complementary colour / specific frequencies / wavelengths of light are absorbed DO NOT ALLOW all other frequencies / colour / AW Use of 'emit' is a CON for the $2^{\text {nd }}$ mark

Question	Expected Answers	Marks	Additional Guidance
(ii)	Ligand substitution \checkmark $\left[\mathrm{CuCl}_{4}\right]^{2-} \checkmark$	2	ALLOW ligand replacement / displacement / exchange or complex formation The charge is required ALLOW $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{4}\right]^{2-}$
(iii)	Any five from a-f: a. make up standard solutions / of known concentrations (of $\mathrm{Cu}^{2+}(\mathrm{aq})$) b. choose a suitable filter / set the colorimeter to a suitable wavelength c. zero colorimeter with water / solvent / AW d. measure absorbance / absorption of standard solutions / AW e. plot calibration curve f. measure unknown AND g. QWC read off concentration from calibration curve / AW \checkmark	6	IGNORE transmittance
	Total	26	

Question	Expected Answers	Marks	Additional Guidance
$3 \text { (a) (i) }$		2	the link between phosphate group and any -OH group on the sugar ie $\mathrm{P}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}$ (in ring next to -O-) or P-O-C (in ring) depending which -OH group is used \checkmark correct linkage ($\mathrm{P}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}$) and rest of structure correct \checkmark
(ii)	Water / $\mathrm{H}_{2} \mathrm{O}$ and condensation (reaction) \checkmark	1	
(iii)		1	ALLOW ALLOW if the $\mathbf{N}-\mathbf{H}$ group is circled
(iv)	lone pair (of electrons) on $\mathrm{N} /$ amine (group) \checkmark accepts a proton / H^{+}	2	

Question	Expected Answers	Marks	Additional Guidance
(b)		3	2 hydrogen bonds correct \checkmark DO NOT ALLOW more than 2 bonds correct polarities (all 3) on one group of atoms \checkmark lone pair on the NORO \checkmark
(c)	two strands (not three) phosphate groups on the outside (not on the inside) bases face into the centre (not the outside)	3	ALLOW double helix IGNORE phosphate backbone
(d)	for removal: infringement of personal liberty / AW / 'fingerprint' not unique only probability / techniques used not foolproof / law / type of government might change changing accessibility / AW against removal: helps to solve many crimes, particularly 'cold' crimes / 'innocent until proved guilty' / AW future research into disease	2	IGNORE hacking into database / leakage of data (NOTE: probability may only be 1 in 20 for some population groups)
	Total	14	

Question	Expected Answers	Marks	Additional Guidance
4 (a)		2	1 mark for each structure correct DO NOT ALLOW missing H atoms if structural formulae are drawn
(b) (i)	there are (two) different groups on each carbon of a $\mathrm{C}=\mathrm{C}$ in neoprene these groups can not rotate about the double bond	2	May be shown in a diagram ALLOW restricted / limited rotation about the double bond
(ii)	(less trans linkages) will make the chains less linear / less regular / less ordered / ORA \checkmark so they can not line up / be arranged so regularly / closely and the crystallinity will be reduced	2	ALLOW chains have a kink / are more randomly arranged Note: $1^{\text {st }}$ mark is for shape of chain, $2^{\text {nd }}$ mark is for relative arrangement of chains.
(c)	-CONH group / NH group / amide group allows nylon to form hydrogen bonds with water molecules no hydrogen bonding in neoprene water molecules will force chains further apart / chains will not fit as closely together / AW \checkmark chains less crystalline / weaker intermolecular forces so T_{g} will be lowered \checkmark	4	IGNORE chains sliding over each other

\(\left.\begin{array}{|c|c|c|l|}\hline Question \& Expected Answers \& Marks \& Additional Guidance

\hline (d) \& \& \mathbf{2} \& 6 carbon atoms and - \mathrm{NH}_{2} group \checkmark

-\mathrm{COO}^{-} \checkmark\end{array}\right]\)| ALLOW skeletal or any equivalent/alternative structural |
| :--- |
| formula |
| DO NOT ALLOW structures with missing H atoms |

Question	Expected Answers	Marks	Additional Guidance
5 (a) (i)	$3 \mathrm{H}_{2} \mathrm{~S}+\underset{\checkmark}{2 \mathrm{MnO}_{4}^{-}}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}$	1	all 4 numbers MUST be correct
(ii)	oxidation state $=+4 \checkmark$	1	DO NOT ALLOW 4+ OR 4
(b) (i)	iron(III) hydroxide \checkmark	1	DO NOT ALLOW iron hydroxide / Fe(OH) 3
(ii)	$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$	2	equation correct state symbols correct ALLOW ecf for iron(II) hydroxide in (i)
(c) (i)	The large excess of ethanedioate and acid means that their concentrations were virtually constant during the reaction / concentrations hardly changed / concentrations were high so little effect on rate / AW \checkmark	1	'A large excess of ethanedioate and acid' by itself does not get the mark IGNORE 'excess ethanedioate and acid not limit the rate of reaction' / AW Look for concentration in answer
(ii)	One of the following: Method 1 half-lives determination of at least two half-lives, 13-15 s half-life constant \checkmark first order \checkmark OR Method 2 finding rate at different concentrations calculation of at least two rates rate is proportional to concentration \checkmark first order \checkmark	3	Two values for half-life MUST be given Working must be shown as either a calculation or by lines on graph.

Question	Expected Answers	Marks	Additional Guidance
(iii)	3d 4s A \uparrow \uparrow \uparrow \perp	1	
(d)	One from the following: loss of $\mathrm{CO}_{2} / \mathrm{CO}_{2}$ produced \checkmark by weighing / gas collection / measuring milkiness of lime-water \checkmark OR titration of $\mathrm{MnO}_{4}^{-} \checkmark$ with (standard) $\mathrm{Fe}^{2+}(\mathrm{aq}) \checkmark$ OR titration of $\mathrm{H}^{+}(\mathrm{aq})$ decrease \checkmark with $\mathrm{OH}^{-} / \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \checkmark$ OR measure pH change $\checkmark \mathrm{H}^{+}$ions used in the reaction	2	The two parts are marked independently ALLOW gas for CO_{2} and measuring volume for gas collection
	Total	12	

