F334 Chemistry of Materials

Que	stion		Expected Answers	Marks	Additional Guidance
1	(a)		2-hydroxypropanoic acid ✓✓	2	mark independently 2-hydroxy ✓ DO NOT ALLOW hydroxyI propanoic acid ✓ ALLOW if propan- and -oic are separated.
	(b)	(i)	(enantiomers are) isomers whose structures are mirror images of one another ✓ and are non-superimposable ✓	2	mark independently mirror images ✓ non-superimposable ✓ IGNORE references to 4 different groups around a C atom, optical isomerism, various chiral words & rotation of plane polarised light
		(ii)	HOOC H H COOH CH ₃ C	2	3D structure correct for one isomer ✓ DO NOT ALLOW 90 or 180 degree angles between the two bonds in the plane of the paper mirror-image correct (must have 4 bonds around the C)✓ ALLOW ecf for non 3D structure with four different groups only IGNORE the way the groups are bonded to carbon eg -OH or –HO, same for COOH & CH₃
	(c)	(i)	P = C Q = A R = B	1	,

F334 Mark Scheme January 2010

Question	Expected Answers	Marks	Additional Guidance
(ii)	P = (C) does not fizz / does not react / with Na ₂ CO ₃ AND so no –COOH group present / AW ✓	3	if answers to (i) are incorrect/no response award 1 mark for correct answers for having both tests for phenol and carboxylic acid:
	Q = no phenol group (in $\bf A$), so FeCl ₃ remains yellow / AW \checkmark		ie: purple solution = phenol
	R = (B has) both phenol & carboxylic acid (COOH) (so will turn FeCl₃ purple and will fizz with Na₂CO₃) / AW ✓		AND acids fizz with carbonate ✓
	The words in brackets are only needed if tests not discussed for P & Q.		IGNORE P is C as it turns FeCl₃ purple
			IGNORE Q is A as it fizzes & is therefore a carboxylic acid
(d)	C ✓	3	
	because: (broad) peak at around 3250 (cm ⁻¹) indicates <u>alcohol or phenol</u> / OH / hydroxyl group ✓		IGNORE any reference to carboxylic acid for the 3250 peak ALLOW a range around 3250
	no peak at 1700–1725 (cm ⁻¹) so no <u>C=O</u> (in –COOH) present ✓		Peaks may be identified on the diagram IGNORE all other peaks
(e) (i)	nucleophilic addition 🗸	2	nucleophilic ✓
			addition ✓
			mark independently

Question	Expected Answers	Marks	Additional Guidance
(ii)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	4	'curly' arrow showing attack by CN at C=O carbon ✓ DO NOT ALLOW arrow starting from N of CN / single- headed arrows but give 1 mark if both are single headed but otherwise correct C=O bond polarised correctly ✓ curly arrow showing movement of double bond ✓ final structure correct ALLOW any correct structural formula not just skeletal ✓ O MUST be −ve IGNORE any further reaction showing O⁻gaining H⁺
(iii)	the rate determining step (slow step) does not involve water \$\sqrt{\text{(since)}}\$ water does not appear in the rate equation \$/\$ water is zero order \$\sqrt{\text{Since water / H+ required to form product it must react in a subsequent (fast) step/there must be at least 2 steps in the reaction \$/\$ AW \$\sqrt{\text{OR}}\$ The rate determining step (slow step) only involves ethanal \$\text{\text{cyanide }} \text{\text{\text{cyanide appear in the rate equation }} \$\text{\text{decause only)}\$ ethanal \$\text{\text{cyanide appear in the rate equation }} \$\text{\text{cyanide appear in the rate equation }} \$\text{\text{decause only)}\$ ethanal \$\text{\text{cyanide appear in the rate equation }} \$\text{\text{cyanide appear in the rate}} \$\text{\text{cyanide appear in the rate equation }} \$\text{\text{cyanide appear in the rate}} \$\	3	IGNORE any further reaction snowing O gaining H

F334 Mark Scheme January 2010

Question	Expected Answers	Marks	Additional Guidance
(f) (i)	reaction 1.1 has a higher atom economy than reaction 1.2 ✓	2	ALLOW comparison of percentage atom economy eg reaction 1.1 has 100% economy, reaction 1.2 does not.
	because it is an addition reaction / only one product is formed whereas in reaction 1.2 hydrolysis / condensation occurs / atoms are wasted / lost / two 'products' are formed / co-products are also formed / AW ✓		IGNORE any reference to substitution / elimination for reaction 1.2 / by-product
(ii)	reduce / cut down on / less / little waste (products) ✓	2	
	costs of are kept to a minimum / less energy used ✓		ALLOW cost effective
	Total	26	

Que	estion	Expected Answers	Marks	Additional Guidance
2	(a)	Fe ³⁺ will oxidise Cu / ORA OR Cu loses electrons to form Cu ²⁺ / ORA ✓	3	ALLOW Fe(III) and Cu(II)
		because electrode potential of Fe³+ / (Fe²+) is more positive / ORA (involves the Copper half-cell) OR Uses E _{cell} calculation to show reaction is feasible√		DO NOT ALLOW electronegativity or higher / lower or larger / smaller
		Cu + $2Fe^{3+} \rightarrow Cu^{2+} + 2Fe^{2+} \checkmark$		IGNORE state symbols
	(b) (i)	Pt electrode for Fe ³⁺ / Fe ²⁺ half cell ✓	5	
		in Fe ³⁺ / Fe ²⁺ ✓		
		Cu electrode in Cu ²⁺ ✓		ALLOW CuSO ₄ etc. instead of Cu ²⁺
		salt bridge labelled and in solutions ✓		
		conditions: 1 mol dm ⁻³ and 298K / 25°C ✓		ALLOW 1 molar / 1M
	(ii)	0.43 V ✓	1	IGNORE any sign
	(c) (i)	Copper(I) iodide ✓	1	DO NOT ALLOW copper iodide ALLOW Copper I iodide

Question	Expected Answers	Marks	Additional Guidance
(ii)	1. moles of thiosulfate = 0.200 x (20.5/1000) = 0.0041 ✓	6	75.0 with no / incomplete working scores 6 marks.
	2. (moles of iodine (I_2) = 0.5 x answer from 1 (0.0041) and moles of Cu^{2+} (aq) in 25.0 cm ³ = 2 x 0.5 x answer		The marks are awarded for the working out given in bold:
	from 1 (0.0041)) = 0.0041 ✓		If final answer is incorrect please annotate marks given with ticks AND crosses where errors have occurred <i>eg</i>
	3. moles of $Cu^{2+}(aq)$ in 250 cm ⁻³ = 10 x answer from 1 (0.0041) = 0.0410 \checkmark		missing out step 3.
	4. mass of Cu in coin = answer from 3 (0.0410)		1. moles of thiosulfate = 0.0041 moles
	x 63.5 = 2.6035 g ✓		2. correct moles of Cu ²⁺ (aq) in 25.0 cm ³ ecf from 1 ✓
	5. % of Cu in coin = (answer from 4 (2.6035)/3.47) x 100 = 75.0 ✓		3. moles of Cu ²⁺ (aq) in 250 cm ⁻³ = 10 x moles of thiosulfate ✓
	6. (3 sig. figs.) ✓		4. mass of Cu in coin = moles of Cu ²⁺ (aq) in 250 cm ⁻³ \times 63.5 \checkmark
			5. % of Cu in coin = mass of Cu in coin x 100 ✓
			6. correct/incorrect answer MUST be given to 3 sig figs. ✓
			Steps 3 & 4 may be in a different order
(d) (i)	(transmits) Blue ✓	2	IGNORE pale, deep or light etc. referring to blue, reflects DO NOT ALLOW green
	Cu²⁺(aq) absorb red / orange light ✓		ALLOW complementary colour / specific frequencies /
			wavelengths of light are absorbed DO NOT ALLOW all other frequencies / colour / AW
	QWC – absorb(s) / absorbing / absorption / absorbance /		
	absorbed		Use of 'emit' is a CON for the 2 nd mark
	One of these words has to be used to gain the second mark and spelling must be correct		

F334 Mark Scheme January 2010

Question	Expected Answers	Marks	Additional Guidance
(ii)	Ligand substitution ✓	2	ALLOW ligand replacement / displacement / exchange or complex formation
	[CuCl ₄] ^{2−} ✓		The charge is required
			ALLOW $[Cu(H_2O)_2Cl_4]^{2-}$
(iii)	Any five from a-f: ✓✓✓✓	6	
	a. make up standard solutions / of known concentrations (of $Cu^{2^+}(aq)$)		
	b. choose a suitable filter / set the colorimeter to a suitable wavelength		
	c. zero colorimeter with water / solvent / AW		
	d. measure absorbance / absorption of standard solutions / AW		IGNORE transmittance
	e. plot calibration curve		
	f. measure unknown		
	AND		
	g. QWC read off concentration from calibration curve / AW <		
	Total	26	

Question	Expected Answers	Marks	Additional Guidance
3 (a) (i)	HO—P—O—	2	the link between phosphate group and any –OH group on the sugar ie P-O-CH ₂ -C (in ring next to –O-)
	O- OH		or P-O-C (in ring) depending which -OH group is used ✓
	OH ✓✓		correct linkage (P-O-CH₂-C) and rest of structure correct ✓
(ii)	Water / H₂O and condensation (reaction) ✓	1	
(iii)		1	ALLOW if the N-H group is circled
(iv)	lone pair (of electrons) on N / amine (group) ✓ accepts a proton / H ⁺ ✓	2	

Question	Expected Answers	Marks	Additional Guidance
(b)	N N N N N N N N N N N N N N N N N N N	3	2 hydrogen bonds correct ✓ DO NOT ALLOW more than 2 bonds correct polarities (all 3) on one group of atoms ✓ lone pair on the N OR O ✓
(c)	two strands (not three) ✓	3	ALLOW double helix
	phosphate groups on the outside (not on the inside) ✓ bases face into the centre (not the outside) ✓		IGNORE phosphate backbone
(d)	for removal:	2	
	infringement of personal liberty / AW /		IGNORE hacking into database / leakage of data
	'fingerprint' not unique only probability /		(NOTE: probability may only be 1 in 20 for some population groups)
	techniques used not foolproof /		Februarian Broades)
	law / type of government might change changing accessibility / AW		
	against removal:		
	helps to solve many crimes, particularly 'cold' crimes /		
	'innocent until proved guilty' / AW ✓		
	future research into disease		
	Total	14	

Qu	estion		Expected Answers	Marks	Additional Guidance
4	(a)			2	1 mark for each structure correct DO NOT ALLOW missing H atoms if structural formulae are drawn
	(b)	(i)	there are (two) different groups on each carbon of a C=C in neoprene ✓ these groups can not rotate about the double bond ✓	2	May be shown in a diagram ALLOW restricted / limited rotation about the double bond
		(ii)	(less trans linkages) will make the <u>chains</u> less linear / less regular / less ordered / ORA ✓ so they can not line up / be arranged so regularly / closely <u>and</u> the crystallinity will be reduced ✓	2	ALLOW chains have a kink / are more randomly arranged Note: 1 st mark is for shape of chain, 2 nd mark is for relative arrangement of chains.
	(c)		— <u>CONH</u> group / <u>NH</u> group / <u>amide</u> group allows nylon to form hydrogen bonds with water molecules ✓ no hydrogen bonding in neoprene ✓ water molecules will force chains further apart / chains will not fit as closely together / AW ✓ chains less crystalline / weaker intermolecular forces so <i>T</i> _g will be lowered ✓	4	IGNORE chains sliding over each other

Question	Expected Answers	Marks	Additional Guidance
(d)		2	6 carbon atoms and –NH₂ group ✓
	O Na ⁺		-COO⁻ ✓
	H_2N		ALLOW skeletal or any equivalent / alternative structural formula
			DO NOT ALLOW structures with missing H atoms
	Total	12	

Question		Expected Answers	Marks	Additional Guidance
5 (a)	(i)	$3H_2S + 2MnO_4^- + 2H^+ \rightarrow 2MnO_2 + 3S + 4H_2O$	1	all 4 numbers MUST be correct
	(ii)	oxidation state = +4 ✓	1	DO NOT ALLOW 4+ OR 4
(b)	(i)	iron(Ⅲ) hydroxide ✓	1	DO NOT ALLOW iron hydroxide / Fe(OH) ₃
((ii)	$Fe^{3+}(aq) + 3OH^{-}(aq) \rightarrow Fe(OH)_3(s)$	2	equation correct ✓ state symbols correct ✓
(c)	(i)	The large excess of ethanedioate and acid means that their concentrations were virtually constant during the reaction / concentrations hardly changed / concentrations were high so little effect on rate / AW ✓	1	'A large excess of ethanedioate and acid' by itself does not get the mark IGNORE 'excess ethanedioate and acid not limit the rate of reaction' / AW Look for concentration in answer
	(ii)	One of the following: Method 1 half-lives determination of at least two half-lives, 13-15 s ✓ half-life constant ✓ first order ✓ OR Method 2 finding rate at different concentrations calculation of at least two rates ✓ rate is proportional to concentration ✓ first order ✓	3	Two values for half-life MUST be given Working must be shown as either a calculation or by lines on graph.

Question	Expected Answers	Marks	Additional Guidance
(iii)	3d 4s	1	
	4444		
(d)	One from the following:	2	The two parts are marked independently
	loss of $\rm CO_2$ / $\rm CO_2$ produced \checkmark by weighing / gas collection / measuring milkiness of lime-water \checkmark		ALLOW gas for CO ₂ and measuring volume for gas collection
	OR		
	titration of MnO₄ ⁻ ✓ with (standard) Fe ²⁺ (aq) ✓		
	OR		
	titration of $H^+(aq)$ decrease \checkmark with OH^- / $CO_3^{2-}(aq)$ \checkmark		
	OR		
	measure pH change \checkmark H $^{+}$ ions used in the reaction \checkmark		
	Total	12	