Surname	Other r	names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Chemistry Unit: 4CH0 Science (Double Av		
Paper: 1CR		
	Morning	Paper Reference 4CH0/1CR 4SC0/1CR

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross ⊠.

Information

- The total mark for this paper is 120.
- The marks for **each** question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

	0	Helium 2 2	20 Neon 10	40 Ar Argon 18	84 Ypton 36	131 Xenon 54	222 Rn 86			
		ŤĬ								
	7		Fluorine 9 m	35.5 Chlorine 17	80 Bromine 35		210 At Astatine 85			
	Q		16 Oxygen 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 Polonium 84			
	Ŋ		14 Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83			
	4				73 Germanium 32	55 <mark>N</mark> H	207 Pb Lead 82			
	ო			27 Aluminium 13			204 TI B1			
			L			112 Cadmium 48	201 Hg Mercury 80			
TABLE					63.5 Cu Copper 29		197 Au Gold 79			
IODIC					S9 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78			
THE PERIODIC TABLE					59 Cobalt 27		192 Ir 77	4		
Ę					26 Te 6	101 Ruthenium 44	190 Osmium 76		i	e ic
	Group	Hydrogen 1			55 Mn Manganese 25	99 Tc 43	186 Re Rhenium 75		Key	Relative atomic mass Symbol Name Atomic number
					52 Chromium 24	96 99 Mo Molybdenum Technetium 42 43	184 V 74			
					51 Vanadium 23	93 Niobium A1		-		
					48 Ti 22	+				
						+		227 AC 89		
	N		9 Be Beryllium 4	24 Mg 12	40 Calcium 20					
			F	23 Sodium 11	39 K Potassium 19	86 Rubidium 37	133 CS Caesium 55	223 Fr 87		
		Period	~	ო	4	Q	9	~		

P 4 4 2 6 8 A 0 2 3 6

2 The diagram shows the separation of crude oil into fractions.

	Fraction	Typical number of carbon atoms per molecule
	A	1 – 4
	→ B	5 – 10
	→ C	11 – 16
	→ D	17 – 20
crude oil —	 ►E	21 – 30
vapour	→ F	more than 30

(a) What is the name of this method of separation?

(1)

(b) Complete the table by giving the correct fraction, A, B, C, D, E or F, for each description.

You may use each letter once, more than once or not at all.

(3)

Fraction	Description
	contains only gases
	is the most viscous
	contains bitumen

the boiling point of the fraction.		(1)
	(Total for	Question 2 = 5 marks)
	4 2 6 8 A 0 5 3 6	Turn

- **3** Illegal drugs are sometimes used to affect the performance of racehorses. These drugs can be detected in horse urine using chromatography.
 - a concentrated sample of urine from each horse is spotted onto the start line of a sheet of chromatography paper
 - known illegal drugs are also spotted onto the same paper
 - ethanol is used as the solvent

The chromatogram shows urine samples, A, B, C and D, and the two illegal drugs lasix and bute.

(a) Explain which urine sample contains an illegal drug.

(2)

(b) What is the meaning of the term solvent ?	(1)
(c) The results for known drugs are given as R _f values.	
R_{f} value = $\frac{\text{distance travelled by the drug}}{\text{distance travelled b}}$ the solvent	
Calculate the R _f value for lasix.	(2)
	(~)
R _f value for lasix =	
(d) Suggest how the solubility of the drug in the solvent affects the distance to by the substance.	ravelled (1)
(Total for Question 3	= 6 marks)
	7

(a) A small piece of each metal is placed on water in separate large troughs.

Complete the table by giving the correct metal, lithium, potassium or caesium, for each description.

(2)

	Description of reaction	Metal
	explodes on contact with water	
	fizzes gently	
	reacts violently and forms a lilac flame	
(b) (i)	Give the name and formula of the gas formed	d when potassium reacts with water.
		(2)
name		
ormula .		
(ii) Give the name and formula of the compound	I formed when lithium reacts
	with water.	(2)
name		

(iii) Describe how you could show that an alkaline solution is formed when caesium reacts with water.	
	(2)
(Total for Question 4 = 8	marks)
	9 Turn over

(ii) Explain which curve, B, C, D or E, could represent the results obtained if the reaction is performed at a lower temperature, with the same mass of marble chips and excess of the acid. (2) (iii) Explain which curve, B, C, D or E, could represent the results obtained if the marble chips are replaced by the same mass of powdered marble chips and excess of the acid. (2) (b) Suggest a suitable piece of apparatus for collecting the carbon dioxide in this experiment. (1) (Total for Question 5 = 7 marks)

P 4 4 2 6 8 A 0 1 1 3 6

6 Solutions of lead(II) nitrate and sodium chloride react together to form a precipitate of lead(II) chloride.

The equation for the reaction is

 $Pb(NO_3)_2(aq) + 2NaCl(aq) \rightarrow PbCl_2(s) + 2NaNO_3(aq)$

A student carries out a series of experiments to find how much precipitate is formed when different volumes of lead(II) nitrate are added.

She uses this method.

- place 15 cm³ of sodium chloride solution into a boiling tube
- add 2.0 cm³ of lead(II) nitrate solution
- allow the precipitate to settle
- measure the height of the precipitate
- repeat the experiment using different volumes of lead(II) nitrate solution

The table shows the student's results.

Volume in cm ³ of lead(II) nitrate added	Height of precipitate in cm
2.0	0.6
4.0	1.2
6.0	1.8
8.0	2.1
10.0	2.5
12.0	2.1
14.0	2.1

(a) Suggest why the height of the precipitate eventually stops increasing as more lead(II) nitrate solution is added.

(1)

7	Alkanes are saturated hydrocarbons that can be obtained from crude oil. The general formula of the homologous series of alkanes is $C_n H_{2n+2}$ (a) (i) What is the meaning of the term saturated ?	(1)
·····	(ii) What is the meaning of the term hydrocarbons ?	(2)
	 (iii) Pentane is an alkane with five carbon atoms in its molecule. What is the molecular formula of pentane? A C₅H₈ B C₅H₁₀ C C₅H₁₂ D C₅H₁₄ 	(1)

P 4 4 2 6 8 A 0 1 4 3 6

(b) (i)	Octane (C ₈ H ₁₈) is an alkane that is present in petrol. When octane burns completely in oxygen it forms carbon dioxide and water. Write a chemical equation for the complete combustion of octane.	(2)
(ii)	Give the name of a toxic gas that may be produced by the incomplete combus of octane.	stion (1)
(c) (i)	Dodecane (C ₁₂ H ₂₆) is another alkane. When heated and passed over a suitable it decomposes to form octane and one other hydrocarbon. State how a catalyst increases the rate of this decomposition.	catalyst, (1)
(ii)	Give the name of a suitable catalyst for this process.	(1)
(iii) Complete the equation that represents the reaction $C_{12}H_{26} \rightarrow C_8H_{18} + 2$	(1)
(iv) Name the other hydrocarbon produced in this reaction.	(1)
	(Total for Question 7 = 11 ma	arks)

8	A flame test is carried out on three metal compounds, X, Y and Z.	
	The diagram shows the apparatus used.	
	platinum wire with loop metal compound being tested	
	(a) (i) Suggest two reasons why platinum is a suitable metal to use as the wire in this test.	
		(2)
1		
2		
Ζ		
	(ii) Why should the platinum wire be cleaned between each test?	(1)
	(iii) Why is a luminous Bunsen flame not suitable for carrying out a flame test?	(1)
······		
	16 I (2011) 10 (1011) 10 (1011) 10 (1010) 10 (1011) 10 (1011) 10 (1010) 10 (1010) 10 (1010) 10 (1010) 10 (1010)	

(b) The three metal compounds are also tested separately with three reagents.

The reagents used are

- aqueous acidified silver nitrate
- aqueous acidified barium chloride
- aqueous sodium hydroxide

The table shows the results of all the tests.

Metal compound	Flame test	Aqueous acidified Aqueous acidified silver nitrate barium chloride		Aqueous sodium hydroxide
x	yellow	white precipitate	no precipitate	no precipitate
Y	red	no precipitate white precipitate r		no precipitate
Z	no colour	no colour no precipitate no precipitate gre		green precipitate

- (i) Give the name of compound X and of compound Y.
- compound X
 - (ii) Identify the cation present in compound Z.
 - (c) Describe a chemical test, other than heating, that could be used to show that compound Z contains carbonate ions.

test

result

(3)

(1)

(4)

(Total for Question 8 = 12 marks)

(b) A mass of 2.800 g of iron reacts with 5.325 g of chlorine.(i) Calculate the empirical formula of the compound formed.	(3)
empirical formula =	=
(ii) Suggest a name for this compound.	(1)
(c) When chlorine gas is bubbled into aqueous sodium hydroxide, a mixture bleach (NaClO), sodium chloride and water is formed.	of
Write a chemical equation for this reaction.	(2)
(Total for Question	9 = 9 marks)
	19 Turn over

BLANK PAGE

10 This apparatus can be used to prepare a sample of hydrogen.
dilute hydrochloric acid in the function of the reaction between zinc and hydrochloric acid. Include state symbols.
(b) State two observations you would make when hydrochloric acid reacts with zinc in the conical flask. (2)

(c) A student carries out two experiments to find the volume of dilute hydrochloric acid required to completely react with 0.5 g of zinc powder.

Experiment 1

She fills a burette to the 0.00 cm³ mark with dilute hydrochloric acid.

She places 0.5 g of zinc powder into a conical flask and then slowly adds the acid to the zinc until the reaction is complete.

The diagram shows the final reading on the burette.

Experiment 2

She then repeats the experiment with 0.5 g of zinc powder from the same source, but with a different sample of dilute hydrochloric acid.

The diagram shows the initial and final burette readings for this experiment.

initial reading

final reading

(i) Use the burette readings to complete the table, recording the volumes to the nearest 0.05 cm³.

(3)

				(5)
		Experiment 1	Experiment 2	
	final burette reading in cm ³			
	initial burette reading in cm ³			
	volume in cm ³ of acid added			
(ii) Th	e concentration of the acid in experin	nent 1 was 0.74 mc	ol/dm³.	
Ex	plain how the concentration of the ac	id in experiment 2	can be calculated.	(2)
		(Total for	Question 10 = 9 m	arks)
<u>,</u>				

11	Tetrafluoroethene (C_2F_4) is a gas that is stored in cylinders.	
	A chemist opened the valve on a new cylinder of tetrafluoroethene. He was surprised when no gas came out.	
	He decided to check the contents of the cylinder. He found it contained a white powder. The tetrafluoroethene had formed a polymer.	
	(a) The displayed formula for the repeat unit of the addition polymer formed is	
	F F CC F F	
	(i) Draw the displayed formula of the monomer.	
	(1)	
	(ii) What is the meaning of the term polymer ?)
	(iii) Suggest the name of this polymer. (1))

(b) The displayed formula for a castion of another addition we have a	
(b) The displayed formula for a section of another addition polymer is	
H H H H H H H H H 	
й й й й й й й й й й	
Give the name and molecular formula of the monomer used to form this polymer.	(2)
	(2)
name	
molecular formula	
(c) Explain why addition polymers that are buried in landfill sites remain chemically unchanged for many years.	
unchanged for many years.	(2)
(Total for Question 11 = 8 mar	
(Total for Question 11 = 8 mar	KS)
	25
	Turn over 🕨

12 A student carries out an investigation to compare the reactivities of four metals, aluminium, copper, zinc and M.

He adds strips of zinc to the aqueous solutions of the nitrates of each metal.

After a few minutes he removes the strips of zinc and examines them.

The table shows his results.

Solution	Result
aluminium nitrate	no change
copper(II) nitrate	brown coating on zinc
zinc nitrate	no change
nitrate of metal M	grey coating on zinc

(a) Name the substance that causes the brown coating on the zinc.

(b) State why there is no change in the experiment with zinc nitrate solution.

(c) The student repeats the experiment with strips of metal M instead of strips of zinc. The table shows his results.

Solution	Result
aluminium nitrate	no change
copper(II) nitrate	brown coating on M
zinc nitrate	no change
nitrate of metal M	no change

Using information from both tables of results, place the metals aluminium, copper, zinc and M in order of decreasing reactivity.

most reactive

least reactive

(2)

(d) Magnesium reacts with an aqueous solution of silver nitrate.	
The reaction can be represented by the ionic equation	
$Mg(s) + 2Ag^{+}(aq) \rightarrow Mg^{2+}(aq) + 2Ag(s)$	
(i) State why this reaction is described as a redox reaction.	(1)
(ii) Explain, in terms of electrons, which species is behaving as an oxidising a this reaction.	agent in (2)
(Total for Question 12 =	: 7 marks)

12. A student uses the following method to group a seven be of budgets doing without any	tala
13 A student uses the following method to prepare a sample of hydrated zinc nitrate crys	itals.
step 1 put 25 cm ³ of dilute nitric acid into a beaker	
step 2 add zinc carbonate until it is in excess	
step 3 separate the dilute solution of zinc nitrate from the mixture	
The student then obtains crystals from the dilute solution of zinc nitrate.	
(a) Name the piece of apparatus used to measure the nitric acid in step 1.	(1)
(b) How would the student know when she has added an excess of zinc carbonate?	(1)
(c) Name the separation method used in step 3.	(1)
(d) The student wants to obtain a pure, dry sample of hydrated zinc nitrate crystals from the dilute solution.	
One method is to leave the solution so that all the water evaporates.	
Describe another method, involving crystallisation, that the student could use.	(4)
(Total for Question 13 = 7 ma	rks)

Sodium chloride (NaCl) and silicon dioxide (SiO₂) both have giant lattice structures.
 Sodium chloride is an ionic compound.
 Silicon dioxide is a covalent compound.

The table shows some properties of each compound.

Sodium chloride	Silicon dioxide
melting point = 801 °C	melting point = 1610 °C
soluble in water	insoluble in water
conducts electricity when molten	does not conduct electricity when molten

(a) (i) Explain why silicon dioxide has a high melting point.	(2)
(ii) Suggest why the melting point of silicon dioxide is higher than the me of sodium chloride.	
(b) State why codium chloride conducts electricity when molton	(1)
(b) State why sodium chloride conducts electricity when molten.	(1)
(c) Carbon dioxide is described as a simple molecular substance. State why carbon dioxide (CO ₂) is a gas at room temperature.	(1)
(Total for Question 14	4 = 5 marks)

15 The formula for hydrated iron(II) sulfate is FeSO₄.xH₂O

The value of x is a whole number between 1 and 10. It can be determined by carrying out a titration with 0.0200 mol/dm³ potassium manganate(VII) (KMnO₄) solution as follows:

- dissolve a sample of FeSO₄.xH₂O in water to make 250 cm³ of solution
- measure out 25.0 cm³ of this solution into a conical flask
- add the KMnO₄ solution using a burette until the end point is reached
- record the volume of solution added
- repeat the titration three more times

The table shows the results.

itration	number	1	2	3	4
/olume	in cm ³ of KMnO ₄ solution added	22.80	22.10	22.50	22.20
concord	ant titration results (\checkmark)				
Conco	ordant results are those within 0.20	cm ³ of each	other.		
Place t	ticks (\checkmark) in the table to show the co	oncordant re	sults.		(1)
	the concordant results, calculate th on added. Give your answer to 2 de			e of KMnO ₄	(2)
					(2)
					(2)
		average	volume adde	ed =	
	is the most suitable piece of appar				
	is the most suitable piece of appai solution?				
FeSO ₄					
FeSO ₄	solution?				
FeSO ₄	solution? beaker				

(d) These results were obtained in another titration. mass of FeSO₄.xH₂O in 250 cm³ of the FeSO₄ solution 5.56 g average volume of KMnO₄ solution added to 25.0 cm³ of solution 20.00 cm³ concentration of the KMnO₄ solution 0.0200 mol/dm³ (i) Calculate the amount, in moles, of $KMnO_4$ in 20.00 cm³ of solution. (2) amount of $KMnO_4 = \dots mol$ (ii) In this reaction one mole of KMnO₄ reacts with five moles of FeSO₄ Calculate the amount, in moles, of $FeSO_4$ in 25.0 cm³ of the $FeSO_4$ solution. (1) amount of $FeSO_4$ in 25.0 cm³ = mol (iii) Calculate the amount, in moles, of $FeSO_4$ in 250 cm³ of this $FeSO_4$ solution. (1) amount of $FeSO_4$ in 250 cm³ = mol (iv) Using your answer from (d)(iii), calculate the mass, in grams, of FeSO₄ in the 5.56 g of FeSO₄.xH₂O. $[M_{r} \text{ of FeSO}_{4} = 152]$ (1) mass of $FeSO_4 = \dots g$

value of x = (Total for Question 15 = 13)		
value of x =		
(iv) Using your answers to parts (ii) and (iii), calculate the value of x in FeSO $_4$.xH $_2$	<u>,</u> 0. (1)	
amount of FeSO ₄ =		r r
(iii) Calculate the amount, in moles, of $FeSO_4$ in 15.2 g of iron(II) sulfate. [M_r of $FeSO_4 = 152$]	(1)	
amount of H ₂ O =		m
mass of water =	(1)	
(i) Calculate the mass of water in 24.2 g of $FeSO_4.xH_2O$	(1)	

BLANK PAGE

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

