Write your name here	
Surname	Other names
Edexcel GCE	Centre Number Candidate Number
Chemistry	
Advanced Unit 4: General Princ Equilibria and	ciples of Chemistry I – Rates, d Further Organic Chemistry noptic assessment)
Advanced Unit 4: General Princ Equilibria and	ciples of Chemistry I – Rates, d Further Organic Chemistry noptic assessment) – Afternoon
Advanced Unit 4: General Princ Equilibria an (including sy	ciples of Chemistry I – Rates, d Further Organic Chemistry noptic assessment) – Afternoon
Advanced Unit 4: General Princ Equilibria and (including sy Wednesday 15 June 2011	ciples of Chemistry I – Rates, d Further Organic Chemistry noptic assessment) – Afternoon Paper Reference 6CH04/01

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets – use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

		SECTION A
	this see	ALL the questions in this section. You should aim to spend no more than 20 minutes on ction. For each question, select one answer from A to D and put a cross in the box \boxtimes . change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .
1		of the following methods would not be suitable for measuring the rate of the n between methanoic acid and bromine?
		$\text{HCOOH}(aq) + \text{Br}_2(aq) \rightarrow 2\text{H}^+(aq) + 2\text{Br}^-(aq) + \text{CO}_2(g)$
	A	Colorimetry
	B	Measuring change in electrical conductivity
	C	Quenching samples and titrating with acid
	D	Measuring change in pressure
		(Total for Question 1 = 1 mark)
2	The ea	uation below shows the hydrolysis of a bromoalkane.
	1	$RBr + OH^- \rightarrow ROH + Br^-$
	For a p	particular bromoalkane, the rate equation is
	-	rate = k[RBr]
	The bro	omoalkane, RBr, is most likely to be
	A	CH ₃ Br
	B	CH ₃ CH ₂ Br
	C	(CH ₃) ₃ CCH ₂ Br
	D 🛛	(CH ₃) ₃ CBr
		(Total for Question 2 = 1 mark)
2	A 1	
3		ease in the entropy of the system, ΔS_{system} , occurs when
		water freezes.
		water boils.
		water reacts with sodium.
	D	water reacts with ethanoyl chloride.
		(Total for Question 3 = 1 mark)

 $2H_2(g) + CO(g) \rightleftharpoons CH_3OH(g)$ $\Delta H = -18.3 \text{ kJ mol}^{-1}$

Addition of more hydrogen to the equilibrium mixture at constant temperature

- \square A increases the equilibrium yield of methanol.
- **B** decreases the equilibrium yield of methanol.
- \square **C** increases the value of $K_{\rm p}$.
- \square **D** decreases the value of $K_{\rm p}$.

(Total for Question 4 = 1 mark)

5 The equation for the equilibrium between $NO_2(g)$ and $N_2O_4(g)$ can be written in two ways.

 $2NO_2(g) \implies N_2O_4(g)$ Equilibrium constant = K_c

or

NO₂(g) $\Rightarrow \frac{1}{2}N_2O_4(g)$ Equilibrium constant = K'_c

Which expression is correct?

- $\square \mathbf{A} \quad K_{\rm c} = K'_{\rm c}$
- $\square \mathbf{B} \quad K_{\rm c} = (K'_{\rm c})^2$
- \Box **C** $K_{\rm c} = 2(K'_{\rm c})$
- $\square \mathbf{D} \quad K_{\rm c} = \frac{1}{2} K_{\rm c}'$

(Total for Question 5 = 1 mark)

6 4.0 mol of methanoic acid are reacted with 6.0 mol of ethanol.

$$\text{HCOOH}(l) + \text{C}_2\text{H}_5\text{OH}(l) \rightleftharpoons \text{HCOOC}_2\text{H}_5(l) + \text{H}_2\text{O}(l)$$

The equilibrium mixture contains 3.0 mol of HCOOC₂H₅.

The equilibrium constant, K_c , for the reaction is

- **▲** 0.33
- **B** 1.0 **B** 1.0
- C 3.0
- **D** 4.0

(Total for Question 6 = 1 mark)

	(a) Wł	ich curve is produced by adding ammonia to 25 cm ³ of hydrochloric acid?	
		ten eurve is produced by adding animolia to 25 cm ⁻ of hydrochloric acid?	(1)
	C		
	D		
	(b) Wh	ich curve is produced by adding ethanoic acid to 25 cm ³ of sodium hydroxide?	
	A		(1)
	B		
	C		
	D D		
	(c) An	indicator with pK_{In} 8.5 is suitable for the following titrations.	
	A	Titrations A and B only.	(1)
	B	Titrations A , B and D only.	
	C	Titration C only.	
	D	Titrations A, B, C and D.	
		(Total for Question 8 = 3 ma	rks)
9	Ethanc	ic acid is not a product in the reaction of	
	🖾 A	ethanal with lithium tetrahydridoaluminate.	
	B	ethanoyl chloride with water.	
	C	ethyl ethanoate with dilute sulfuric acid.	
	D	ethanol refluxed with potassium dichromate(VI) and sulfuric acid.	
		(Total for Question 9 = 1 m	ark)
	Use th	is space for any rough working. Anything you write in this space will gain r	no credit
	Use th	is space for any rough working. Anything you write in this space will gain r	io ci cui

10 This question is about four compounds with molecular formula C_4H_8O . CH₃COCH₂CH₃ А B CH₃CH₂CH₂CHO С CH₃CH=CHCH₂OH D CH2-CHOH $\dot{C}H_2$ — $\dot{C}H_2$ (a) The compounds which react when heated with a mixture of potassium dichromate(VI) and sulfuric acid are (1) \square A compounds A, B and C. **B** compounds A, B and D. **C** compounds A, C and D. D D compounds **B**, **C** and **D**. (b) The compound which produces a yellow precipitate when heated with a mixture of iodine and sodium hydroxide is (1) compound A. **B** compound **B**. **C** compound C. D D compound **D**. (c) There would **not** be a significant peak at mass/charge ratio of 15 in the mass spectrum of (1) compound A. 🖾 A B compound **B**. **C** compound C. compound **D**. D D (Total for Question 10 = 3 marks)

			Turn
	Use	this space for any rough working. Anything you write in this space will gain n	o credit
		(Total for Question 11 = 3 ma	rks)
	⊠ F		
	(c) W	Which test would give a positive result with propanal but not with propanone?	(1)
	XI)	
	× F	3	
	X A	A Contraction of the second seco	(1)
	(b) W	Which test would give a positive result with propanoic acid and with propan-1-ol?	(1)
	I		
	☑ (
	I I	3	
	I A		(1)
		Which test would give a positive result with propanoic acid but not with ropan-1-ol?	
	D	Add phosphorus(V) chloride, PCl ₅ .	
	С	Add solid sodium carbonate.	
	В	Warm with Fehling's or Benedict's solution.	
	A	Warm with 2,4-dinitrophenylhydrazine.	
11	The f	following tests can be carried out on organic compounds.	

14 In gas chromatography, mixtures are passed through a long tube containing a liquid as the stationary phase. The mixtures are separated into their components because the components differ in	monia to make an amine. amine to make an amide. alcohol to make an ester.
 A It reacts with ammonia to make an amine. B It reacts with an amine to make an amide. C It reacts with an alcohol to make an ester. D It reacts with water to make an organic acid. (Total for Question 13 = 1 mark) 14 In gas chromatography, mixtures are passed through a long tube containing a liquid as the stationary phase. The mixtures are separated into their components because the components differ in	monia to make an amine. amine to make an amide. alcohol to make an ester. ter to make an organic acid.
 C It reacts with an alcohol to make an ester. D It reacts with water to make an organic acid. (Total for Question 13 = 1 mark) 14 In gas chromatography, mixtures are passed through a long tube containing a liquid as the stationary phase. The mixtures are separated into their components because the components differ in 	alcohol to make an ester. ter to make an organic acid.
 D It reacts with water to make an organic acid. (Total for Question 13 = 1 mark) 14 In gas chromatography, mixtures are passed through a long tube containing a liquid as the stationary phase. The mixtures are separated into their components because the components differ in 	ter to make an organic acid.
(Total for Question 13 = 1 mark) (Total	
(Total for Question 13 = 1 mark) 14 In gas chromatography, mixtures are passed through a long tube containing a liquid as the stationary phase. The mixtures are separated into their components because the components differ in	
14 In gas chromatography, mixtures are passed through a long tube containing a liquid as the stationary phase. The mixtures are separated into their components because the components differ in	
\square A relative molecular mass.	The mixtures are separated into their components because the
B melting temperature.	מעור
\Box C volatility.	
\square D force of attraction to the liquid.	
(Total for Question 14 = 1 mark)	
\square D force of attraction to the liquid.	

P 3 8 4 8 2 A 0 9 2 4

· (1v)	The product of step 2 is not optically active even though it has a chiral carbon atom in its formula. Explain, by reference to the mechanism, the reason for the lack of optical activity.	(2)
(b) Wh	at reactant, or combination of reactants, is needed to carry out step 3?	(1)
(c) (i)	What is the systematic name of lactic acid?	(1)
(ii)	Lactic acid molecules can combine to form a biodegradable polymer, poly(lactic acid) or PLA. Draw a section of the polymer with two units of the polymer chain and showing all bonds.	(1)
(iii)	Suggest why PLA is biodegradable.	(1)
10		

16 Nitrogen(IV) oxide, NO_2 , is a brown gas which is a pollutant in air. It is produced in the reaction below.

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

(a) The table below shows the results of a series of experiments to measure the rate of this reaction at 298 K.

Experiment	Initial concentra	ation / mol dm^{-3}	Initial rate
number	$[O_2(g)]$	[NO(g)]	$/ \text{ mol } dm^{-3} s^{-1}$
1	0.0050	0.0125	5.10×10^{-4}
2	0.0100	0.0125	10.2×10^{-4}
3	0.0100	0.0250	40.8×10^{-4}

(i) State, with reasons, the order of reaction with respect to oxygen and the order of reaction with respect to nitrogen(II) oxide, NO.

(2)

(ii) Write	e the rate equation for the reaction.	(1)
(iii) Calcu	alate the value of the rate constant. Include units in your answer.	(2)
(b) Nitrogen(IV) oxide in air reacts with carbon monoxide in car exhausts. The	
	two-step reaction mechanism has been suggested.	
Step 1:	$2NO_2(g) \rightarrow NO(g) + NO_3(g)$ Slow	
Step 2:	$NO_3(g) + 2CO(g) \rightarrow NO(g) + 2CO_2(g)$ Fast	
(i) Write	e the equation for the overall reaction which takes place.	(1)
	overall reaction is second order. Suggest a rate equation for this reaction, ying your answer.	(2)
	(Total for Question 16 = 8 ma	rks)

17 Ammo	nia is manufactured using the reaction	
	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	
(a) (i)	Calculate $\Delta S_{\text{system}}^{\ominus}$ for this reaction at 298 K. Give your answer in J mol ⁻¹ K ⁻¹ and include a sign. You will need to refer to your data booklet.	
	[Note that the standard molar entropy values for gaseous diatomic elements are given for half a mole of molecules, and not per mole of molecules eg entropy for 1 mol of N_2 is 2 × 95.8 J mol ⁻¹ K ⁻¹ .]	(2)
(ii)	Using ideas about disorder, explain whether the sign of your answer to (a)(i) is as expected.	(2)
(b) At '	700 K, the enthalpy change for this reaction, $\Delta H = -110.2 \text{ kJ mol}^{-1}$.	
(i)	Calculate the entropy change of the surroundings, $\Delta S_{\text{surroundings}}$, at 700 K. Include a sign and units in your answer.	(2)
14		

(ii) Calculate ΔS_{system} for this reaction at 700 K. At this temperature the total entropy change, $\Delta S_{\text{total}} = -78.7 \text{ J K}^{-1} \text{ mol}^{-1}$. Include a sign and units in your answer.

(1)

(iii) What does the value of ΔS_{total} , which is -78.7 J K⁻¹ mol⁻¹ at 700 K, indicate about the relative proportions of nitrogen, hydrogen and ammonia at equilibrium?

(1)

- (c) A mixture of nitrogen, hydrogen and ammonia is at equilibrium at 150 atm. The partial pressures of nitrogen and ammonia in the mixture are 21 atm and 36 atm respectively.
 - (i) Write an expression for the equilibrium constant, K_p , for the formation of ammonia, in terms of partial pressures for this reaction, and calculate its value at 700 K. Include units in your answer.

(4)

(iv) Suggest one advantage of using a temperature higher tha	n 700 K. (1)
Hence explain the disadvantage of using a temperature h	igher than 700 K. (4)
Explain how this change affects the value of ΔS_{total} and the as temperature increases.	ne equilibrium constant
For this exothermic reaction how does $\Delta S_{\text{surroundings}}$ chang increases?	e as temperature
(iii) In the manufacture of ammonia, a temperature of about 7	700 K is used.
pressure above 100 atm.	(1)

18 Methanoic acid, ethanoic acid and iodic(I) acid, HIO, are all weak acids.

(a) The values of the acid dissociation constant, K_a , for methanoic and ethanoic acid at 298 K are given below. Iodic(I) acid has a p K_a of 10.64. Complete the table by calculating the value of K_a for iodic(I) acid.

Acid K_a / mol dm⁻³methanoic acid 1.6×10^{-4} ethanoic acid 1.7×10^{-5} iodic(I) acid 1.7×10^{-5}

(b) (i) Write the expression for K_a for methanoic acid, HCOOH.

 (ii) Calculate the pH of a solution of methanoic acid with concentration 0.50 mol dm⁻³ at 298 K.

(iii) State **one** of the assumptions you have made when calculating the pH in (ii).

P 3 8 4 8 2 A 0 1 7 2

(1)

(1)

(1)

(3)

$HCOOH + CH_3COOH \Longrightarrow HCOO^- + CH_3COOH_2^+$

(i) Give the formulae of the two Brønsted-Lowry acids in this equilibrium.

(1)

(ii) Write an equation showing the products of the equilibrium which is set up when iodic(I) acid is mixed with ethanoic acid.

 $HIO + CH_3COOH \rightleftharpoons$ +.....

(d) A shampoo is buffered by the addition of a mixture of methanoic acid and sodium methanoate.

The pH of this shampoo is 4.9. Calculate the hydrogen ion concentration in the shampoo, and hence the ratio of methanoate ions to methanoic acid.

(2)

(Total for Question 18 = 10 marks)

TOTAL FOR SECTION B = 50 MARKS

SECTION C	•
-----------	---

Answer ALL the questions. Write your answers in the spaces provided.	
19 The chemical X is an ester with formula CH ₃ COOC(CH ₃) ₃ which occurs in raspberries and pears. It can be prepared in the laboratory by refluxing ethanoic acid with an alcohol in the presence of a catalyst.	
(a) Name the alcohol and catalyst which would be used to make X .	(2)
Alcohol	
Catalyst	
(b) After refluxing, the resulting mixture is distilled to give an impure product containing X. The impure product is washed several times with sodium carbonate solution and then dried.	
(i) Name the piece of equipment in which the impure product would be washed.	(1)
(ii) What is the purpose of washing the impure product with sodium carbonate solution?	(1)
(iii) Name a suitable drying agent.	(1)

(iv) The impure product is then redistilled and **X**, which has a boiling temperature of 97 °C, is collected. Draw a labelled diagram of the apparatus you would use.

(3)

*(c) Spectrum 1 is the high resolution proton nmr spectrum of X, $CH_3COOC(CH_3)_3$.

patterns.	(4)
	21
	Turn ove

- (e) X has several other structural isomers which have a broad peak at approximately 2960 cm⁻¹ in their infrared spectra. Some of the isomers have a chiral carbon atom and all have a higher boiling temperature than X. None of them reacts with 2,4-dinitrophenylhydrazine.
 - *(i) Draw the structure of **one** of the isomers which is optically active, explaining how you use **all** the information in the question.

(5)

(ii) Could the compound you have drawn in (e)(i) be distinguished by infrared spectroscopy from its other isomers with the properties listed above?Explain your answer.

(1)

(Total for Question 19 = 20 marks)

TOTAL FOR SECTION C = 20 MARKS TOTAL FOR PAPER = 90 MARKS

	8)	(18) 4.0 hetium 2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	Кr	krypton 36	131.3	Xe	xenon 54	[222]	Rn	radon 86									
	0 (8)		2	Z		58			8				×	xer 2	[2]			-	orted	Г					E	_
	7	(17)	19.0	Ŀ	fluorine 9	35.5	บ	chlorine 17	79.9	Br	bromine 35	126.9	-	iodine 53	[210]	At	astatine 85		been rep	175	c/i	Lu lutetium 71	[757]		lav	103
	9	(16)	16.0	0	oxygen 8	32.1	S	sulfur 16	79.0	Se	selenium 34	127.6	Te	tellurium 52	[209]	Ъ	polonium 84		116 have Iticated	C - 7	5/1	Yb ytterbium 70	[754]		nobelium	102
	ъ	(15)	14.0	z	nitrogen 7	31.0	٩	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		tomic numbers 112-116 hav but not fully authenticated	0.1	601	Tm thutium 69	[756]		mendelevium	101
	4	(14)	12.0	υ	carbon 6	28.1		silicon 14	72.6	ge	germanium 32	118.7	Sn	tin 50	207.2	Pb	lead 82		atomic nur but not fi	1,1	101	Er erbium 68	[753]		_	100
	m	(13)	10.8	В	boron 5	27.0	AI	aluminium 13	69.7	Ga	gallium 31	114.8	Ľ	indium 49	204.4	F	thallium 81	:	Elements with atomic numbers 112-116 have been reported but not fully authenticated	115	601	Ho holmium 67	[JEA]	L L L	einsteinium	66
ents								(12)	65.4	Zn	Zn zinc 30 30 48 48 48 48 80 80 80 80 80 Elem	Elem	.,	201	Dy dysprosium 66	[7541	<u>ا</u>	californium einsteinium	98							
Elem				(11) 63.5 Cu 29							107.9	Ag	silver 47	197.0	ΡN	gold 79	[272]	Kg roentgenium 111	1 ED	6C	terbium 65	[745]	Rk	Е		
The Periodic Table of Elements			(01)	58.7	Ż	nickel 28	106.4	Р	palladium 46	195.1	£	platinum 78	_	US damstadtium 110	167	/cl	Gd gadolinium 64	[747]	<u>ع</u>	curium	96					
c Tab					(6)					ვ	cobalt 27	102.9	Rh	rhodium 45	192.2	<u>-</u>	iridium 77	[268] Mt meitnerium 109		1 EJ	701	Eu europium 63	[243]	2 2	americium	95
riodia		1.0 H hydrogen 1						(8)	55.8	Fe		101.1	Ru	ruthenium 44	190.2	õ	osmium 76		HS hassium 108		n i	Sm samarium 62	[747]	DI D	neptunium plutonium americium	94
Je Pe							(2)			۸n	manganese 25	[98]	Ч	technetium 43	186.2	Re	rhenium 75	[264]	n bohrium 107	[1 17]	[14/]	Pm promethium 61	[737]		neptunium	93
È			mass	pol	umber			(9)	52.0	ა	Ę	95.9	Mo	molybdenum technetium 42 43	183.8	3	tungsten 74	[266]	Sg seaborgium 106		++	Nd neodymium 60	738		uranium	92
		Key	relative atomic mass	atomic symbol	name atomic (proton) number			(2)	50.9	>	vanadium 23	92.9	qN	niobium 41	180.9	Ta	tantalum 73	_	dubnium 105		4 1	Pr Nd praseodymium 59 60	[734]	ď	protactinium	91
			relati	ato	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Hf	hafnium 72	[261]	KT rutherfordium 104	1	<u></u>	Cerium 58	727	i t	F	60
								(3)	45.0	Sc	scandium 21	88.9	≻	yttrium 39	138.9	La*	lanthanum 57	[227]	AC [*] actinium 89			ĸ				
	2	(2)	9.0 Beryllium 4				Mg	magnesium 12	40.1	Ca	calcium 20	87.6	Sr	strontium 38	137.3	Ba	barium 56	[326]	Ka radium 88		cine opine	* Actinide series				
	-	(1)	6.9	Ľ.	lithium 3	23.0		sodium 11	39.1	¥	potassium 19	85.5	Rb	rubidium 37	132.9	ۍ	caesium 55	[223]	FF francium 87		4400 *	* Actin				