4766 Statistics 1 | Q1 | Mean = 7.35 (or better) | B2cao $\sum fx = 323.5$ | | |-----------|--|---|---| | (i) | Standard deviation: 3.69 – 3.70 (awfw) | B2cao $\sum fx^2 = 2964.25$ | | | | Allow $s^2 = 13.62$ to 13.68 | (B1) for variance s.o.i.o | | | | Allow rmsd = $3.64 - 3.66$ (awfw) | (B1) for rmsd | | | | After B0, B0 scored then if at least 4 correct mid-points seen or used. {1.5, 4, 6, 8.5, 15} | (B1) mid-points | | | | Attempt of their mean = $\frac{\sum fx}{44}$, with 301 \le fx \le 346 and fx | (B1) 6.84≤mean≤7.86 | 4 | | | strictly from mid-points not class widths or top/lower boundaries. | | | | (ii) | Upper limit = $7.35 + 2 \times 3.69 = 14.73$ or 'their sensible mean' + $2 \times$ 'their sensible s.d.' | M1 (with s.d. < mean) | | | | So there could be one or more outliers | E1 dep on B2, B2 earned and comment | 2 | | | | TOTAL | 6 | | Q2
(i) | $P(W) \times P(C) = 0.20 \times 0.17 = 0.034$
$P(W \cap C) = 0.06$ (given in the question) | M1 for multiplying or 0.034 seen | | | | · · · · · · · · · · · · · · · · · · · | A1 (numerical | | | | Not equal so not independent (Allow $0.20 \times 0.17 \neq 0.06$ or \neq p (W \cap C) so not independent). | justification needed) | 2 | | (ii) | | | | | | W | G1 for two overlapping circles labelled G1 for 0.06 and either | | | | 0.1 (0.06) 0.11 | 0.14 or 0.11 in the correct places | | | | 0.69 | G1 for all 4 correct probs in the correct places (including the 0.69) | 3 | | | The last two G marks are independent of the labels | NB No credit for
Karnaugh maps here | | | (iii) | | | | | | $P(W C) = \frac{P(W \cap C)}{P(C)} = \frac{0.06}{0.17} = \frac{6}{17} = 0.353 \text{ (awrt 0.35)}$ | M1 for 0.06 / 0.17 A1 cao | 2 | | (iv) | Children are more likely than adults to be able to speak | E1FT Once the correct | 1 | |------|--|---|---| | , | Welsh or 'proportionally more children speak Welsh than | idea is seen, apply ISW | | | | adults' | | | | | Do not accept: 'more Welsh children speak Welsh than | | | | | adults' | | | | | | TOTAL | 8 | | Q3 | (A) $0.5 + 0.35 + p + q = 1$ | | | | (i) | so $p + q = 0.15$ | B1 p + q in a correct | 1 | | | (B) $0 \times 0.5 + 1 \times 0.35 + 2 p + 3q = 0.67$ | equation before they reach p + q =0.15 | | | | so $2p + 3q = 0.32$ | | | | | (C) from above $2p + 2q = 0.30$ | B1 2p + 3q in a correct | 1 | | | so $q = 0.02, p = 0.13$ | equation before they reach 2p + 3q = 0.32 | - | | | | (B1) for any 1 correct | | | | | answer B2 for both correct | 2 | | | | answers | | | (ii) | F(18) 0 0 5 1 0 0 5 1 0 10 10 10 10 10 10 10 10 10 10 10 10 | M1 $\Sigma x^2 p$ (at least 2 | | | | $E(X^2) = 0 \times 0.5 + 1 \times 0.35 + 4 \times 0.13 + 9 \times 0.02 = 1.05$ | non zero terms correct)
M1dep for (- 0.672), | | | | $Var(X) = $ 'their 1.05' $- 0.67^2 = 0.6011$ (awrt 0.6) | provided $Var(X) > 0$ | | | | (M1, M1 can be earned with their p ⁺ and q ⁺ but not A mark) | A1 cao (No n or n-1 divisors) | 3 | | | | TOTAL | 7 | | Q4 | X ~ B(8, 0.05) | | | | (i) | (A) $P(X = 0) = 0.95^8 = 0.6634$ 0.663 or better | M1 0.95 ⁸ A1 CAO | 2 | | | Or using tables $P(X = 0) = 0.6634$ | Or B2 (tables) | _ | | | | M1 for $P(X = 1)$ (allow | | | | (B) $P(X = 1) = {8 \choose 1} \times 0.05 \times 0.95^7 = 0.2793$ | 0.28 or better) M1 for 1 − P(X ≤ 1) | 3 | | | P(X > 1) = 1 - (0.6634 + 0.2793) = 0.0573 | must have both | | | | | probabilities
A1cao (0.0572 – | | | | | 0.0573) | | | | Or using tables $P(X > 1) = 1 - 0.9428 = 0.0572$ | M1 for $P(X \le 1)$ 0.9428 | | | | | M1 for $1 - P(X \le 1)$ 0.3428 | | | | | A1 cao (must end | | | (ii) | | in2) | | | ` ′ | Expected number of days = $250 \times 0.0572 = 14.3$ awrt | M1 for 250 x prob(B) | 2 | | | | A1 FT but no rounding at end | | | | | TOTAL | 7 | | | I . | I | | | | | , | | |-----------|--|---|---| | Q5
(i) | Let p = probability of remembering or naming all items (for population) (whilst listening to music.)
H ₀ : p = 0.35
H ₁ : p > 0.35 | B1 for definition of <i>p</i>
B1 for H ₀
B1 for H ₁ | | | | H ₁ has this form since the student believes that the probability will be increased/ improved/ got better /gone up. | E1dep on p>0.35 in H ₀ In words not just because p > 0.35 | 4 | | (ii) | Let $X \sim B(15, 0.35)$
Either : $P(X \ge 8) = 1 - 0.8868 = 0.1132 > 5\%$
Or $0.8868 < 95\%$
So not enough evidence to reject H_0 (Accept H_0) | Either: M1 for probability (0.1132) M1dep for comparison A1dep | | | | Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved / improved/ got better /gone up. (when listening to music.) | E1dep on all previous marks for conclusion in context | | | | | Or: | | | | Or: Critical region for the test is {9,10,11,12,13,14,15} 8 does not lie in the critical region. So not enough evidence to reject H ₀ Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved / | M1 for correct CR(no omissions or additions) M1dep for 8 does not lie in CR A1dep E1dep on all previous marks for conclusion in | | | | improved/ got better /gone up. (when listening to music.) | context | | | | Or: The smallest critical region that 8 could fall into is $\{8, 9, 10, 11, 12, 13, 14, \text{ and } 15\}$. The size of this region is 0.1132 $0.1132 > 5\%$ So not enough evidence to reject H_0 Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved (when listening to music) | Or: M1 for CR{8,9,15}and size = 0.1132 M1 dep for comparison A1dep E1dep on all previous marks for conclusion in context | | | | | | 4 | | | | TOTAL | 8 | | | ı | 1 | | | | Section B | | | |-----------|--|---|---| | Q6
(i) | (A) P(both rest of UK) = 0.20×0.20
= 0.04 | M1 for multiplying
A1cao | 2 | | | (<i>B</i>) Either: All 5 case P(at least one England) = (0.79 x 0.20) + (0.79 x 0.01) + (0.20 x 0.79) + (0.01 x 0.79) + (0.79 x 0.79) = 0.158 + 0.0079 + 0.158 + 0.0079 + 0.6241 = 0.9559 Or | M1 for any correct term (3case or 5case) M1 for correct sum of all 3 (or of all 5) with no extras A1cao (condone 0.96 www) | | | | P(at least one England) = $1 - P(\text{neither England})$
= $1 - (0.21 \times 0.21) = 1 - 0.0441 = 0.9559$
or listing all
= $1 - \{ (0.2 \times 0.2) + (0.2 \times 0.01) + (0.01 \times 0.20) + (0.01 \times 0.01) \}$
= $1 - (**)$
= $1 - \{ 0.04 + 0.002 + 0.002 + 0.0001 \}$
= $1 - 0.0441$
= 0.9559 | Or M1 for 0.21 × 0.21
or for (**) fully
enumerated or 0.0441
seen
M1 dep for 1 – (1 st part)
A1cao | | | | Or: All 3 case P(at least one England) = = 0.79 × 0.21 + 0.21 × 0.79 + 0.79 ² = 0.1659 + 0.1659 + 0.6241 = 0.9559 | See above for 3 case | 3 | | | (C)Either
$0.79 \times 0.79 + 0.79 \times 0.2 + 0.2 \times 0.79 + 0.2 \times 0.2 = 0.9801$
Or
$0.99 \times 0.99 = 0.9801$
Or
$1 - \{0.79 \times 0.01 + 0.2 \times 0.01 + 0.01 \times 0.79 + 0.01 \times 0.02 + 0.01^2\} = 1 - 0.0199$
= 0.9801 | M1 for sight of all 4 correct terms summed A1 cao (condone 0.98 www) or M1 for 0.99 x 0.99 A1cao Or M1 for everything 1 - {} | 2 | | (ii) | P(both the rest of the UK neither overseas) | A1cao
M1 for numerator of | | | | $= \frac{\text{P(the rest of the UK } and \text{ neither overseas)}}{\text{P(neither overseas)}}$ $= \frac{0.04}{0.9801} = 0.0408$ {Watch for: $\frac{answer(A)}{answer(C)}$ as evidence of method (p <1)} | 0.04 or 'their answer to (i)(A)' M1 for denominator of 0.9801 or 'their answer to (i) (C)' A1 FT (0 < p < 1) 0.041 at least | 3 | | (iii) | | | | |-------|---|---|----| | | (A) Probability = $1 - 0.79^5$
= $1 - 0.3077$
= 0.6923 (accept awrt 0.69)
see additional notes for alternative solution | M1 for 0.79 ⁵ or
0.3077
M1 for 1 – 0.79 ⁵ dep
A1 CAO | | | | (B) $1 - 0.79^n > 0.9$ EITHER: $1 - 0.79^n > 0.9$ or $0.79^n < 0.1$ (condone = and \ge throughout) but not reverse inequality $n > \frac{\log 0.1}{\log 0.79}$, so $n > 9.768$ Minimum $n = 10$ Accept $n \ge 10$ | M1 for equation/inequality in n (accept either statement opposite) M1(indep) for process of using logs i.e. $\frac{\log a}{\log b}$ A1 CAO | 3 | | | OR (using trial and improvement): Trial with 0.79^9 or 0.79^{10} $1 - 0.79^9 = 0.8801$ (< 0.9) or $0.79^9 = 0.1198$ (> 0.1) $1 - 0.79^{10} = 0.9053$ (> 0.9) or $0.79^{10} = 0.09468$ (< 0.1) Minimum $n = 10$ Accept $n \ge 10$ | M1(indep) for sight of 0.8801 or 0.1198 M1(indep) for sight of 0.9053 or 0.09468 A1 dep on both M's cao | 3 | | | NOTE: $n = 10$ unsupported scores SC1 only | TOT:: | 40 | | | | TOTAL | 16 | | Q7 | | | | |-------|--|---|---| | (i) | Positive | B1 | 1 | | (ii) | Number of people = $20 \times 33 (000) + 5 \times 58 (000)$
= $660 (000) + 290 (000) = 950 000$ | M1 first term M1(indep) second term A1 cao NB answer of 950 scores M2A0 | 3 | | (iii) | (A) $a = 1810 + 340 = 2150$
(B) Median = age of 1 385 (000 th) person or 1385.5 (000)
Age 30, cf = 1 240 (000); age 40, cf = 1 810 (000)
Estimate median = (30) + $\frac{145}{570}$ × 10
Median = 32.5 years (32.54) If no working shown then 32.54 or | M1 for sum A1 cao 2150 or 2150 thousand but not 215000 B1 for 1 385 (000) or 1385.5 M1 for attempt to interpolate $\frac{145k}{570k} \times 10$ | 2 | | | better is needed to gain the M1A1. If 32.5 seen with no previous working allow SC1 | (2.54 or better suggests this) A1 cao min 1dp | | | (iv) | Frequency densities: 56, 65, 77, 59, 45, 17 (accept 45.33 and 17.43 for 45 and 17) | B1 for any one correct
B1 for all correct
(soi by listing or from
histogram) | | | | 00 T Reparts detail, Proceeds 70 00 10 10 10 10 10 10 10 10 | Note: all G marks
below dep on attempt
at frequency density,
NOT frequency G1 Linear scales on
both axes (no
inequalities) G1 Heights FT their
listed fds or all must be
correct. Also widths.
All blocks joined | | | | | G1 Appropriate label for vertical scale eg 'Frequency density (thousands)', 'frequency (thousands) per 10 years', 'thousands of people per 10 years'. (allow key). OR f.d. | 5 | | (v) | Any two suitable comments such as: | E1 | | |------|---|---|----| | | | E1 | | | | Outer London has a greater proportion (or %) of people | | | | | under 20 (or almost equal proportion) | | | | | The modal group in Inner London is 20-30 but in Outer London it is 30-40 | | | | | Outer London has a greater proportion (14%) of aged 65+ | | | | | <u>All</u> populations in <u>each</u> age group are higher in Outer London | | | | | Outer London has a more evenly spread distribution or balanced distribution (ages) o.e. | | 2 | | (vi) | Mean increase ↑ median unchanged (-) midrange increase ↑ | Any one correct B1 Any two correct B2 Any three correct B3 All five correct B4 | | | | standard deviation increase ↑ interquartile range unchanged. (-) | | 4 | | | | TOTAL | 20 |