(i)	$\begin{aligned} \mathrm{P}(X=1) & =8 \times 0.1^{1} \times 0.9^{7} \\ & =0.383 \end{aligned}$	M1 for binomial probability $\mathrm{P}(X=1)$ A1 (at least 2 sf) CAO	2
(ii)	$\lambda=30 \times 0.1=3$ (A) $\mathrm{P}(X=6)=\mathrm{e}^{-3} \frac{3^{6}}{6!}=0.0504$ (3 s.f.) or from tables $=0.9665-0.9161=0.0504$ (B) Using tables: $\mathrm{P}(X \geq 8)=1-\mathrm{P}(X \leq 7)$ $=1-0.9881=0.0119$	B1 for mean SOI M1 for calculation or use of tables to obtain $\mathrm{P}(X=6)$ A1 (at least 2sf) CAO M1 for correct probability calc' A1 (at least 2sf) CAO	1 2 2
(iii)	n is large and p is small	B1, B1 Allow appropriate numerical ranges	2
(iv)	$\begin{aligned} & \mu=n p=120 \times 0.1=12 \\ & \sigma^{2}=n p q=120 \times 0.1 \times 0.9=10.8 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	2
(v)	$\begin{aligned} & \mathrm{P}(X>15.5)=\mathrm{P}\left(Z>\frac{15.5-12}{\sqrt{10.8}}\right) \\ & =\mathrm{P}(Z>1.065)=1-\Phi(1.065)=1-0.8566 \\ & =0.1434 \end{aligned}$ NB Allow full marks for use of $N(12,12)$ as an approximation to Poisson(12) leading to $1-\Phi(1.010)=1$ $-0.8438=0.1562$	B1 for correct continuity correction. M1 for probability using correct tail A1 cao, (but FT wrong or omitted CC)	3
(vi)	From tables $\Phi^{-1}(0.99)=2.326$ $\begin{aligned} & \frac{x+0.5-12}{\sqrt{10.8}} \geq 2.326 \\ & x=11.5+2.326 \times \sqrt{10.8} \geq 19.14 \end{aligned}$ So 20 breakfasts should be carried NB Allow full marks for use of $N(12,12)$ leading to $x \geq 11.5+2.326 \times \sqrt{12}=19.56$	B1 for 2.326 seen M1 for equation in x and positive z-value A1 CAO (condone 19.64) A1FT for rounding appropriately (i.e. round up if c.c. used o/w rounding should be to nearest integer)	4
			18

Question 2

(i)	$X \sim N\left(49.7,1.6^{2}\right)$ $\text { (A) } \quad \begin{aligned} \mathrm{P} & (X>51.5)=\mathrm{P}\left(Z>\frac{51.5-49.7}{1.6}\right) \\ & =\mathrm{P}(Z>1.125) \\ & =1-\Phi(1.125)=1-0.8696=0.1304 \end{aligned}$ $\text { (B) } \begin{aligned} \mathrm{P} & (X<48.0)=\mathrm{P}\left(Z<\frac{48.0-49.7}{1.6}\right) \\ \quad & =\mathrm{P}(Z<-1.0625)=1-\Phi(1.0625) \\ & =1-0.8560=0.1440 \\ \mathrm{P}(48.0 & <X<51.5)=1-0.1304-0.1440=0.7256 \end{aligned}$	M1 for standardizing M1 for prob. calc. A1 (at least 2 s.f.) M1 for appropriate prob' calc. A1 (0.725-0.726)	5
(ii)	P (one over 51.5, three between 48.0 and 51.5) $=\binom{4}{1} \times 0.7256 \times 0.2744^{3}=0.0600$	M1 for coefficient M1 for $0.7256 \times$ 0.2744^{3} A1 FT (at least 2 sf)	3
(iii)	From tables, $\begin{aligned} & \Phi^{-1}(0.60)=0.2533, \Phi^{-1}(0.30)=-0.5244 \\ & 49.0=\mu+0.2533 \sigma \\ & 47.5=\mu-0.5244 \sigma \\ & 1.5=0.7777 \sigma \\ & \sigma=1.929, \mu=48.51 \end{aligned}$	B1 for 0.2533 or 0.5244 seen M1 for at least one correct equation $\mu \& \sigma$ M1 for attempt to solve two correct equations A1 CAO for both	4
(iv)	Where μ denotes the mean circumference of the entire population of organically fed 3 -year-old boys. $n=10$ Test statistic $Z=\frac{50.45-49.7}{1.6 / \sqrt{10}}=\frac{0.75}{0.5060}=1.482$ 10% level 1 tailed critical value of z is 1.282 $1.482>1.282$ so significant. There is sufficient evidence to reject H_{0} and conclude that organically fed 3 -year-old boys have a higher mean head circumference.	E1 M1 A1(at least 3sf) B1 for 1.282 M1 for comparison leading to a conclusion A1 for conclusion in context	6
			18

Question 3

(i)	EITHER: $\left.\begin{array}{rl} \mathrm{S}_{x y} & =\Sigma x y-\frac{1}{n} \Sigma x \Sigma y=6235575-\frac{1}{10} \times 4715 \times 13175 \\ & =23562.5 \end{array} \quad \begin{array}{rl} \mathrm{S}_{x x} & =\Sigma x^{2}-\frac{1}{n}(\Sigma x)^{2}=2237725-\frac{1}{10} \times 4715^{2}= \\ & 14602.5 \end{array}\right\} \begin{aligned} & \mathrm{S}_{y y}= \Sigma y^{2}-\frac{1}{n}(\Sigma y)^{2}=17455825-\frac{1}{10} \times 13175^{2}= \\ & r= 97762.5 \\ & \mathrm{~S}_{x y} \\ & \sqrt{\mathrm{~S}_{x x} \mathrm{~S}_{y y}}=\frac{23562.5}{\sqrt{14602.5 \times 97762.5}}=0.624 \end{aligned}$ OR:	M1 for method for $\mathrm{S}_{x y}$ M1 for method for at least one of $\mathrm{S}_{x x}$ or $\mathrm{S}_{y y}$ A1 for at least one of $\mathrm{S}_{x y}, \mathrm{~S}_{x x}$ or $\mathrm{S}_{y y}$ correct M1 for structure of r A1 (0.62 to 0.63) M1 for method for cov (x, y) M1 for method for at least one msd A1 for at least one of $\mathrm{S}_{x y}, \mathrm{~S}_{x x}$ or $\mathrm{S}_{y y}$ correct M1 for structure of r A1 (0.62 to 0.63)	5
(ii)	$\mathrm{H}_{0}: \rho=0$ $\mathrm{H}_{1}: \rho \neq 0$ (two-tailed test) where ρ is the population correlation coefficient For $n=10,5 \%$ critical value $=0.6319$ Since $0.624<0.6319$ we cannot reject H_{0} : There is not sufficient evidence at the 5% level to suggest that there is any correlation between length and circumference.	B 1 for $\mathrm{H}_{0}, \mathrm{H}_{1}$ in symbols B1 for defining ρ B1FT for critical value M1 for sensible comparison leading to a conclusion A1 FT for result B1 FT for conclusion in context	6
(iii)	(A) This is the probability of rejecting H_{0} when it is in fact true. (B) Advantage of 1% level - less likely to reject H_{0} when it is true. Disadvantage of 1% level - less likely to accept H_{1} when H_{0} is false.	B 1 for ' $\mathrm{P}\left(\right.$ reject H_{0})' B1 for 'when true' B1, B1 Accept answers in context	2

(iv)	The student's approach is not valid. If a statistical procedure is repeated with a new sample, we should not simply ignore one of the two outcomes. The student could combine the two sets of data into a single set of twenty measurements.	E1 - allow suitable alternatives. E1 for combining samples.	$\mathbf{3}$
			$\mathbf{1 8}$

Question 4

(ii)	The values of 6.25 and 7.77 show that under 25's have a strong positive association with pop whereas over 50's have a strong negative association with pop. The values of 4.51 and 2.94 show that over 50's have a reasonably strong positive association with both classical and jazz. The values of 2.70 and 3.30 show that under 25's have a reasonably strong negative associations with both classical and jazz. The 25-50 group's preferences differ very little from the overall preferences.	B1, B1 for specific reference to a value from the table of contributions followed by an appropriate comment B1, B1 (as above for second value) B1 (as above for third value)	$\mathbf{6}$
			$\mathbf{1 8}$

