Mark Scheme

(i)	$P(X = 1) = 8 \times 0.1^{1} \times 0.9^{7}$ = 0.383	M1 for binomial probability P(X=1) A1 (at least 2sf) CAO	2
(ii)	$\lambda = 30 \times 0.1 = 3$ (A) P(X = 6) = e ⁻³ $\frac{3^6}{2}$ = 0.0504(3 s.f.)	B1 for mean SOI	1
	or from tables = $0.9665 - 0.9161 = 0.0504$	use of tables to obtain $P(X=6)$ A1 (at least 2sf) CAO	2
	(B) Using tables: $P(X \ge 8) = 1 - P(X \le 7)$	M1 for correct probability calc'	2
	= 1 - 0.9881 = 0.0119	A1 (at least 2sf) CAO	
(iii)	<i>n</i> is large and <i>p</i> is small	B1, B1 Allow appropriate numerical ranges	2
(iv)	$\mu = np = 120 \times 0.1 = 12$ $\sigma^2 = npq = 120 \times 0.1 \times 0.9 = 10.8$	B1 B1	2
(v)	$P(X > 15.5) = P\left(Z > \frac{15.5 - 12}{\sqrt{10.8}}\right)$ = P(Z > 1.065) = 1 - $\Phi(1.065)$ = 1 - 0.8566 = 0.1434 NB Allow full marks for use of N(12,12) as an approximation to Poisson(12) leading to 1 - $\Phi(1.010)$ = 1 - 0.8438 = 0.1562	B1 for correct continuity correction. M1 for probability using correct tail A1 cao, (but FT wrong or omitted CC)	3
(vi)	From tables $\Phi^{-1}(0.99) = 2.326$ $\frac{x+0.5-12}{\sqrt{10.8}} \ge 2.326$ $x = 11.5 + 2.326 \times \sqrt{10.8} \ge 19.14$ So 20 breakfasts should be carried NB Allow full marks for use of N(12,12) leading to $x \ge 11.5 + 2.326 \times \sqrt{12} = 19.56$	 B1 for 2.326 seen M1 for equation in <i>x</i> and positive <i>z</i>-value A1 CAO (condone 19.64) A1FT for rounding appropriately (i.e. round up if c.c. used o/w rounding should be to nearest integer) 	4
			δΓ

Question 2

(i)	$X \sim N(49.7, 1.6^{2})$ (A) $P(X > 51.5) = P\left(Z > \frac{51.5 - 49.7}{1.6}\right)$ $= P(Z > 1.125)$ $= 1 - \Phi(1.125) = 1 - 0.8696 = 0.1304$	M1 for standardizing M1 for prob. calc. A1 (at least 2 s.f.)	
	(B) $P(X < 48.0) = P\left(Z < \frac{48.0 - 49.7}{1.6}\right)$ = $P(Z < -1.0625) = 1 - \Phi(1.0625)$ = $1 - 0.8560 = 0.1440$ P(48.0 < X < 51.5) = 1 - 0.1304 - 0.1440 = 0.7256	M1 for appropriate prob' calc. A1 (0.725 – 0.726)	5
(ii)	P(one over 51.5, three between 48.0 and 51.5) = $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$ × 0.7256 × 0.2744 ³ = 0.0600	M1 for coefficient M1 for 0.7256 × 0.2744 ³ A1 FT (at least 2 sf)	3
(iii)	From tables, $\Phi^{-1}(0.60) = 0.2533, \Phi^{-1}(0.30) = -0.5244$ $49.0 = \mu + 0.2533 \sigma$ $47.5 = \mu - 0.5244 \sigma$	B1 for 0.2533 or 0.5244 seen M1 for at least one correct equation $\mu \& \sigma$	
	$1.5 = 0.7777 \sigma$ $\sigma = 1.929, \mu = 48.51$	M1 for attempt to solve two correct equations A1 CAO for both	4
(iv)	Where μ denotes the mean circumference of the entire population of organically fed 3-year-old boys. n = 10,	E1	
	Test statistic $Z = \frac{50.45 - 49.7}{1.6/\sqrt{10}} = \frac{0.75}{0.5060} = 1.482$	M1 A1(at least 3sf)	
	10% level 1 tailed critical value of z is 1.282	B1 for 1.282	
	1.482 > 1.282 so significant. There is sufficient evidence to reject H_0 and conclude that organically fed 3-year-old boys have a higher	M1 for comparison leading to a conclusion A1 for conclusion in	
	mean head circumference.		6
			18

	Ouestion 3	3
--	-------------------	---

~~~			
(1)	EITHER: $S_{xy} = \Sigma xy - \frac{1}{n}\Sigma x\Sigma y = 6235575 - \frac{1}{10} \times 4715 \times 13175$	M1 for method for $S_{xy}$	
	= 23562.5	M1 for method for at least one of $S_{xx}$ or $S_{yy}$	
	$S_{XX} = \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 2237725 - \frac{1}{10} \times 4715^2 =$ 14602.5	A1 for at least one of $S_{xy}$ , $S_{xx}$ or $S_{yy}$ correct	
	$S_{yy} = \Sigma y^2 - \frac{1}{n} (\Sigma y)^2 = 17455825 - \frac{1}{10} \times 13175^2 =$	M1 for structure of <i>r</i> A1 (0.62 to 0.63)	
	97762.5		
	$r = \frac{S_{xy}}{\sqrt{S_x S_x}} = \frac{23562.5}{\sqrt{14602.5 \times 97762.5}} = 0.624$	M1 for method for cov ( <i>x</i> , <i>y</i> )	
	$\frac{\sqrt{S_{xx}S_{yy}}}{\sqrt{R}} = \sqrt{1+002.5} \times \frac{1}{1002.5}$	M1 for method for at least one msd	
	$cov (x,y) = \frac{2xy}{n} - xy = 6235575/10 - 471.5 \times 1317.5$ = 2356.25	A1 for at least one of $S_{xy}$ , $S_{xx}$ or $S_{yy}$ correct	
	rmsd(x) = $\sqrt{\frac{S_{xx}}{n}} = \sqrt{(14602.5/10)} = \sqrt{1460.25} = 38.21$	M1 for structure of <i>r</i> A1 (0.62 to 0.63)	5
	rmsd(y) = $\sqrt{\frac{S_{yy}}{n}} = \sqrt{(97762.5/10)} = \sqrt{9776.25} = 98.87$		
	$r = \frac{\text{cov}(x,y)}{\text{rmsd}(x)\text{rmsd}(y)} = \frac{2356.25}{38.21 \times 98.87} = 0.624$		
(ii)	H ₀ : $\rho = 0$ H ₁ : $\rho \neq 0$ (two-tailed test)	B1 for $H_0$ , $H_1$ in symbols	
	where $ ho$ is the population correlation coefficient	B1 for defining $\rho$	
	For $n = 10$ , 5% critical value = 0.6319	B1FT for critical value	
	Since 0.624 < 0.6319 we cannot reject $H_0$ :	M1 for sensible comparison leading to	6
	There is not sufficient evidence at the 5% level to suggest that there is any correlation between length and circumference.	a conclusion A1 FT for result B1 FT for conclusion in context	
(iii)	<ul> <li>(A) This is the probability of rejecting H₀ when it is in fact true.</li> <li>(B) Advantage of 1% level – less likely to reject H₀</li> </ul>	B1 for 'P(reject H ₀ )' B1 for 'when true'	2
	when it is true. Disadvantage of 1% level – less likely to accept $H_1$ when $H_0$ is false.	B1, B1 Accept answers in context	2

(iv)	The student's approach is not valid.	E1	
	If a statistical procedure is repeated with a new		
	sample, we should not simply ignore one of the two	E1 – allow suitable	
	outcomes.	alternatives.	
	The student could combine the two sets of data into a	E1 for combining	
	single set of twenty measurements.	samples.	3
			18

## **Question 4**

Observed		Musical preference		Row			
0.00		Рор	Classical	Jazz	totals		
Aae	Under 25	57	15	12	84		
group	25 – 50	43	21	21	85	_	M1 A2 for expected
	Over 50	22	32	27	81		values (at least 1
Colu	mn totals	122	68	60	250		
						л I	dp) (allow A1 for a
Expected		Mus	ical prefer	ence	Row		least one row or
•	1	Рор	Classical	Jazz	totals		
Aae	Under 25	40.992	22.848	20.160	84		column correct)
group	25 – 50	41.480	23.120	20.400	85		
	Over 50	39.528	22.032	19.440	81		
Colu	mn totals	122	68	60	250		
•		Muo	ical profes			1	
Contr	ibutions	Pop					M1 for valid attempt a
	Under	гор	Classical	Jazz		-	(O-E) ² /E
Age	25	6.25	2.70	3.30			A1 for all correct
group	25 – 50	0.06	0.19	0.02			
	Over 50	7.77	4.51	2.94			
							M1dep for summation A1 for $X^2$ (27.7 – 27.8)
$X^2 = 2^2$	7.74 ο χ ₄ ²	:% lovel	= 9 488				B1 for 4 deg of f B1 CAO for cv B1FT E1 (conclusion in

(ii)	The values of 6.25 and 7.77 show that under 25's have a strong positive association with pop whereas over 50's have a strong negative association with pop. The values of 4.51 and 2.94 show that over 50's have a reasonably strong positive association with both classical and jazz. The values of 2.70 and 3.30 show that under 25's have a reasonably strong negative associations with both classical and jazz. The 25-50 group's preferences differ very little from the overall preferences.	B1, B1 for specific reference to a value from the table of contributions followed by an appropriate comment B1, B1 (as above for second value ) B1, B1 (as above for third value)	6
			18