GCE

Chemistry A

H432/01: Periodic table, elements and physical chemistry

Advanced GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Annotations

Annotation	Meaning
\mathbf{A}	Correct response
\boldsymbol{A}	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level3
SEEN	Benefit of doubt not given
I	Noted but no credit given
BP	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

SECTION A

Question	Answer	Marks	AO element	Guidance
$\mathbf{1}$	\mathbf{D}	$\mathbf{1}$	2.7	
$\mathbf{2}$	\mathbf{B}	$\mathbf{1}$	1.2	
$\mathbf{3}$	\mathbf{B}	$\mathbf{1}$	2.2	
$\mathbf{4}$	\mathbf{C}	$\mathbf{1}$	2.2	
$\mathbf{5}$	\mathbf{A}	$\mathbf{1}$	1.1	
$\mathbf{6}$	\mathbf{A}	$\mathbf{1}$	2.2	
$\mathbf{7}$	\mathbf{D}	$\mathbf{1}$	1.1	
$\mathbf{8}$	\mathbf{D}	$\mathbf{1}$	2.6	
$\mathbf{9}$	\mathbf{B}	$\mathbf{1}$	2.6	
$\mathbf{1 0}$	\mathbf{C}	$\mathbf{1}$	1.2	ALLOW 2 in the answer box
$\mathbf{1 1}$	\mathbf{D}	$\mathbf{1}$	2.2	
$\mathbf{1 2}$	\mathbf{C}	$\mathbf{1}$	2.6	
$\mathbf{1 3}$	\mathbf{B}	$\mathbf{1}$	1.1	
$\mathbf{1 4}$	\mathbf{D}	$\mathbf{1}$	1.2	ALLOW 1 in the answer box
$\mathbf{1 5}$	\mathbf{C}	$\mathbf{1}$	1.1	

SECTION B

Question			Answer	Marks	AO element	Guidance
16	(a)		(The mean/average mass) taking into account the relative abundancies of the isotopes \checkmark	1	1.1	```ALLOW sum of (isotopic mass \(\times \%\) abundance) sum of (isotopic mass \(\times\) abundance) /total abundance \\ DO NOT ALLOW average mass of the isotopes```
		(i)	Mg with no (or 8) outer electrons AND $2 \times \mathrm{Br}$ with 'dot-and-cross' outer octet Correct charges \checkmark	2	$\begin{aligned} & 1.2 \\ & 2.5 \end{aligned}$	ALLOW 8 electrons in Mg^{2+} BUT 'extra' electron in Br^{-}must match symbol for electrons in Mg^{2+} IGNORE inner shells and circles ALLOW 1 mark if both electron arrangements and charges are correct but only one Br is drawn. ALLOW 2[Br-], 2[Br]-(brackets not required)
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=1.71 \times 10^{22}$ award 3 marks $n\left(\mathrm{MgBr}_{2}\right)=\frac{1.74}{184.1}=0.00945 \ldots . . \mathrm{mol} \checkmark$ Moles of ions $=0.00945 \ldots \times 3=0.0283 \ldots \mathrm{~mol} \checkmark$ Number of ions $=0.0283 \ldots \times 6.02 \times 10^{23}=1.71 \times 10^{22} \checkmark$ 3SF required	3	2.2×3	ALLOW ECF $\text { Calculator answer }=9.451385117 \times 10^{-3}$ ALLOW ECF from incorrect moles of ions. $\text { e.g. } 0.00945$ Common error $5.69 \times 10^{21} \quad \text { no } \times 3 \quad 2 \text { marks }$

Quest	Answer	Marks	AO element	Guidance
(c)*	Refer to marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5-6 marks) Explains all three melting point values and conductivities in terms of structure, bonding, particles and relative strengths of the forces. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Attempts to explain all three melting point values and conductivities in terms of the structure, bonding, particles of all three substances, but explanations may be incomplete or may contain only some correct statements or comparisons. OR Correctly explains two of the melting point values and conductivities in terms of the structure, bonding, particles. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Identifies only some of the structures, forces and particles AND Attempts to explain the melting point values OR conductivities in terms of the structure, bonding, particles There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{aligned} & 1.1 \times 3 \\ & 2.1 \times 3 \end{aligned}$	Indicative scientific points may include: Structure and bonding Magnesium - Structure: giant lattice - Metallic bonding - Delocalised electrons Bromine - Structure: simple molecular - induced dipole dipole forces (London forces) - (Between) molecules DO NOT ALLOW (between) atoms Magnesium bromide - Structure: giant lattice - lonic bonding - (Between) oppositely charged ions Comparison of bond strengths - Metallic and ionic bonds are stronger than London forces OR Metallic and lonic bonds need more energy to break than London forces Conductivity - Magnesium: conducts due to delocalised electrons can move/mobile. IGNORE 'Carry' charge for movement - Magnesium bromide: In solid IONS cannot move; in solution IONS can move. DO NOT ALLOW electrons. - Bromine: Does not conduct as no mobile charge carriers.

Question		Answer	Marks	AO element	Guidance
(d)	(i)	$\begin{aligned} & \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{Br}(\mathrm{~g})+2 \mathrm{e}^{-} \checkmark \\ & \mathrm{Mg}(\mathrm{~s})+\mathrm{Br}_{2}(\mathrm{l}) \checkmark \end{aligned}$	2	1.2×2	State symbols required. CARE: Liquid state symbol for Br_{2}
	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{- 3 4 6 . 5}$ award 2 marks $\begin{aligned} & 2 \Delta H \text { hyd }= \\ & -525-186-(2 \times 112)-148-736-1450+(2 \times-325) \\ & +1926 \\ & \text { OR } \\ & -525-186-224-148-736-1450+650+1926 \\ & \text { OR } \\ & =-693 \checkmark \\ & \Delta H \text { hyd }=-346.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$	2	2.2×2	ALLOW -347 (kJ mol-1) for 2 marks. ALLOW for 1 mark ONE error with sign OR use of 2: -693 (not divided by 2 at the end) 346.5 (wrong sign on answer) Common errors for 1 mark $\begin{aligned} & -2272.5(-1926 \text { instead of 1926) } \\ & -1386(2 \times-693 \text { instead of } 693) \\ & -996.5(-650 \text { instead of } 650) \\ & -509(2 \times 325 \text { not used }) \\ & -290.5(2 \times 112 \text { not used }) \\ & -198.5(148 \text { instead of }-148) \\ & -160.5(186 \text { instead of }-186) \\ & -122.5(224 \text { instead of }-224) \\ & 178.5(525 \text { instead of }-525) \\ & 389.5(736 \text { instead of }-736) \\ & 1103.5(1450 \text { instead of }-1450) \end{aligned}$ For other answers, check for a single transcription error or calculation error which could merit 1 mark DO NOT ALLOW any answer which involves two errors e.g. -453 ($\mathbf{2} \times 325$ not used AND 2×112 not used)

Question	Answer	Marks	AO element	Guidance
(iii)	$\text { Equation: } \quad \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{Br}^{-}(\mathrm{g}) \rightarrow \mathrm{MgBr}_{2}(\mathrm{~s}) \checkmark$ CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{- 2 4 3 3}$ award 2 marks Lattice enthalpy = $\begin{aligned} & \Delta \text { hy } H\left(\mathrm{Mg}^{2+}\right)+2 \times \Delta \text { ny } H(\mathrm{Br})-\Delta \mathrm{sol} H\left(\mathrm{MgBr}_{2}\right) \mathrm{OR} \\ & -1926+(2 \times-346.5)-(-186) \end{aligned}$ OR $\begin{aligned} & \Delta \mathrm{f} H(\mathrm{MgBr} 2)-2 \Delta \mathrm{at} H(\mathrm{Br})-\Delta \mathrm{at} H(\mathrm{Mg}) \\ & \quad-1 \mathrm{st} \mathrm{IE}(\mathrm{Mg})-2 \mathrm{nd} \mathrm{IE}(\mathrm{Mg})-2 \Delta \mathrm{ea} H(\mathrm{Br}) \text { OR } \\ & -525-(2 \times 112)-148-736-1450-(2 \times-325) \checkmark \end{aligned}$ Lattice enthalpy $=-2433 \mathrm{~kJ} \mathrm{~mol}^{-1} \checkmark$	3	$\begin{gathered} 1.2 \\ 2.2 \times 2 \end{gathered}$	State symbols required For other answers, check for a single transcription error or calculation error which could merit 1 mark DO NOT ALLOW any answer which involves two errors ALLOW ECF from incorrect answer to d(ii)
	Total	18		

Question			Answer	Marks	AO element	Guidance
18	(a)		Equation: $\mathrm{Mg}+2 \mathrm{CH}_{3} \mathrm{COOH} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg}+\mathrm{H}_{2} \checkmark$ Oxidation: $\quad \mathrm{Mg}$ from 0 to $+2 \checkmark$ Reduction: $\quad H$ from +1 to $0 \checkmark$	3	2.6 1.2 1.2	ALLOW Mg(CH3 ${ }^{\mathrm{COO})_{2}}$ ALLOW multiples IGNORE Oxidation numbers in formulae IGNORE state symbols Mark independently from equation ALLOW 1 mark for correct oxidation numbers but incorrectly linked to redox.
	(b)		$\begin{array}{cccc} \hline \mathrm{HCOOH}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{HCOO}^{-}+\mathrm{CH}_{3} \mathrm{COOH}_{2}+\checkmark \\ \begin{array}{c} \text { A1 } \end{array} & \text { B2 } & \text { B1 } & \text { A2 } \\ \text { OR } & \text { B1 } & \text { B2 } & \text { A1 } \checkmark \end{array}$ CARE: Both + and - charges required for products in equilibrium DO NOT AWARD the 2nd mark from an equilibrium expression that omits either charge	2	1.2×2	IGNORE state symbols (even if wrong) IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid-base pairs, i.e. NOTE For the 2nd marking point (acid-base pairs), this is the ONLY acceptable ECF i.e. NO ECF from impossible chemistry
	(c)	(i)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-2.72} \text { OR } 1.905 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}} \\ & {\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{\left(1.905 \times 10^{-3}\right)^{2}}{1.78 \times 10^{-5}}} \\ & \quad\left(=0.204 \mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$	2	2.4×2	ALLOW 2SF up to calculator value of $1.905460718 \times 10^{-3}$ ALLOW use of [HA] Mark is for working.

Question	Answer	Marks	AO element	Guidance
(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=2.4 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ award 4 marks Calculation of H^{+}in buffer $\left[\mathrm{H}^{+}\right]_{\text {buffer }}=10^{-4.00} \text { OR } 1 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ Calculation of $\mathrm{CH}_{3} \mathrm{COOH}$ in buffer $n\left(\mathrm{CH}_{3} \mathrm{COOH}\right) \mathrm{OR}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{\text {buffer }}$ $=\frac{0.204}{1000} \times 400$ OR $8.16 \times 10^{-2} \checkmark$ Calculation of [$\mathrm{CH}_{3} \mathrm{COO}^{-}$] in buffer (in $1 \mathrm{dm}^{3}$) $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]_{\text {buffer }}=1.78 \times 10^{-5} \times \frac{8.16 \times 10^{-2}}{1 \times 10^{-4}}$ $\text { OR } 1.5 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ Calculation of original [$\mathrm{CH}_{3} \mathrm{COO}^{-}$] (in $\mathbf{6 0 0} \mathrm{cm}^{3}$) $\begin{aligned} {\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]_{\text {jititial }} } & =\left(\frac{1.45248 \times 10^{-2} \times 1000}{600}\right) \\ & =2.4 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\prime} \end{aligned}$	4	3.3×3	ALLOW ECF ALLOW [HA] and $\left[\mathrm{A}^{-}\right]$in working ALLOW 1.5×10^{-2} up to calculator value 1.45248 $\times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ ALLOW 2.4×10^{-2} up to calculator value $2.4208 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ COMMON ERRORS BUT CHECK WORKING $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$jinitial $=8.7 \times 10^{-3}$ 3 marks 600 and 1000 inverted $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]_{\text {jinitial }}=3.6 \times 10^{-6}$ 3 marks [$\left.\mathrm{CH}_{3} \mathrm{COOH}\right]:\left[\mathrm{H}^{+}\right]$inverted $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]_{\text {initial }}=1.3 \times 10^{-6}$ 2 marks [$\left.\mathrm{CH}_{3} \mathrm{COOH}\right]$: $\left[\mathrm{H}^{+}\right]$inverted AND 600 and 1000 inverted No volumes used $=3.6 \times 10^{-2}$ 2 marks

Question	Answer	Marks	AO element	Guidance
	ALLOW alternative approach based on HendersonHasselbalch equation (ALLOW $-\log K_{\mathrm{a}}$ for $\mathrm{p} K_{\mathrm{a}}$) e.g. $\begin{aligned} & \mathrm{pH}=\mathrm{pK} K_{\mathrm{a}}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}^{2}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]} \text {OR } \mathrm{p} K_{\mathrm{a}}-\log \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \text { OR } \\ & 4=4.75+\log \frac{8.16 \times 10^{-2}}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]} \text {OR } 4.75-\log \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{8.16 \times 10^{-2}} \checkmark \\ & \log \left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=4-4.75-1.09=-1.84 \checkmark \\ & {\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]_{\text {buffer }}=1.5 \times 10^{-2} \checkmark} \\ & {\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]_{\text {ginitial }}=2.4 \times 10^{-2} \checkmark} \end{aligned}$			ALLOW - $\log K_{a}$ for $p K_{a}$
	Total	12		

Question		Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
19	(a)	Circuit Complete circuit AND voltmeter AND salt bridge linking two half-cells \checkmark Half cells Ag AND Ag ${ }^{+}$AND 1 mol dm ${ }^{-3}$ solution \checkmark Pt AND H^{+}AND $\mathrm{MnO}_{4}{ }^{-}$AND Mn^{2+} AND $1 \mathrm{~mol} \mathrm{dm}^{-3}$ /equimolar solution \checkmark	3	$\begin{aligned} & 3.4 \times 1 \\ & 1.2 \times 1 \\ & 1.2 \times 1 \end{aligned}$	Voltmeter must be shown AND salt bridge must be labelled ALLOW small gaps in circuit If species in BOTH half cells are correct but concentration of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ omitted, ALLOW 1 mark for BOTH half cells. ALLOW acidified as an alternative for H^{+} IGNORE stated pressure Not relevant here as no gas
	(b)	Comparison of E values E of redox system $4\left(\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}\right)$ is more positive/less negative than E of redox systems 2 ($\mathrm{HCOOH} / \mathrm{HCHO}$) OR $1\left(\mathrm{CO}_{2} / \mathrm{HCOOH}\right) \checkmark$ Equilibrium shift related to E values More negative/less positive/system 2 ($\mathrm{HCOOH} / \mathrm{HCHO}$) OR system $1(\mathrm{CO} / \mathrm{HCOOH})$ shifts left OR Less negative/more positive/system $4\left(\mathrm{MnO}^{-} / \mathrm{Mn}^{2+}\right)$ shifts right \checkmark - 2 and 4 $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{HCHO}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{HCOOH}+3 \mathrm{H}_{2} \mathrm{O} \checkmark$ - 1 and 4 $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{HCOOH}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O} \checkmark$	4	3.1×2	IGNORE higher/lower ALLOW Overall Ereaction $=(+) 1.54 \mathrm{~V}$ OR (+) 1.62 V For 'shifts left', ALLOW 'is oxidised' OR 'electrons are lost' OR 'reducing agent' For 'shifts right', ALLOW 'is reduced' OR 'electrons are gained' OR 'oxidising agent' IGNORE state symbols ALLOW multiples DO NOT ALLOW un-cancelled species, e.g. H^{+}, on both sides ALLOW for 1 mark two balanced equations with uncancelled species. ALLOW combined equation for 2 marks: $4 \mathrm{MnO}_{4}^{-}+5 \mathrm{HCHO}+12 \mathrm{H}^{+} \rightarrow 4 \mathrm{Mn}^{2+}+5 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}$

Question		Answer	Marks	AO element	Guidance
	(c)	$2 \mathrm{H}^{+}+1 / 2 \mathrm{O}_{2}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} \checkmark$ $1.34+(-0.11)=(+) \underline{1.23}(\mathrm{~V}) \checkmark$	$\mathbf{2}$	2.6 2.2×1	IGNORE state symbols ALLOW multiples
			Total	$\mathbf{9}$	

| Question | | Answer | Marks | AO
 element | Guidance |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |

Quest	Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
(b)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 7.4 award 4 marks	4		ALLOW minimum of 2SF throughout
	Initial moles of reactants 1 mark $n\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{\text {initial }}=\frac{9.6}{32}=0.3-(\mathrm{mol})$ AND $n\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{\text {intitial }}=\frac{12}{60}=0.2(\mathrm{~mol})$		1.2×1	
			2.8×3	ALLOW ECF from initial moles
	$n\left(\mathrm{CH}_{3} \mathrm{COOCH}_{3}\right)_{\text {equil }}$ $=0.17(\mathrm{~mol})$ AND $n\left(\mathrm{H}_{2} \mathrm{O}\right)_{\text {equil }}$ $=0.17(\mathrm{~mol}) \checkmark$			ALLOW ECF from equilibrium moles Use of V not required but Kc expression must be correct
	K_{c} calculation $K_{c}=\frac{0.17 / \mathrm{V} \times 0.17 / \mathrm{V}}{0.13 / \mathrm{V} \times 0.03 / \mathrm{V}}=7.4 \checkmark$			ALLOW up to calculator answer of 7.41025641
	Total	9		

Question	Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
(b)	Benefit AND risk required for ONE mark Benefit: kills bacteria \checkmark AND Risk: toxic/poisonous OR forms chlorinated hydrocarbons OR forms carcinogens/toxic compounds	1	1.1	ALLOW kills micro-organisms OR kills pathogens OR kills viruses OR sterilises/disinfects water IGNORE antiseptic, reduces risk of disease, cleans water IGNORE 'harmful'/'dangerous' IGNORE chlorine is carcinogenic/ dangerous for health/causes breathing problems
(c)	$\begin{aligned} & n(\mathbf{A})=\frac{0.209}{29}=0.00721(\mathrm{~mol}) \\ & M_{r}=\frac{1.26}{0.00721}=174.8 \checkmark \end{aligned}$ Molecular formula $=\mathrm{BrF}_{5}$ Formula is dependent on Mr	3	2.2×2 3.2	ALLOW ECF ALLOW 2SF 0.0072 up to calculator value 0.0072068965517 ALLOW 175 up to calculator value 174.8325359 ALLOW F5Br ALLOW ECF that matches calculated Mr_{r}
	Total	9		

Question			Answer	Marks	AO element	Guidance
22	(a) ${ }^{\text {+ }}$	(i)	Refer to marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5-6 marks) All three tests are covered in detail, with at least six of B to H identified correctly and equations mostly correct. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) All three tests are covered with at least four of \mathbf{B} to \mathbf{H} identified correctly. Some attempt at writing equations, but with several omissions or incorrect formulae. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Only two tests covered with at least two of \mathbf{B} to \mathbf{H} identified correctly, and little attempt at writing equations. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{aligned} & 3.3 \times 3 \\ & 3.4 \times 3 \end{aligned}$	Indicative scientific points may include: Identification of unknowns Can be identified within labelled equation. B is $\mathrm{FeSO}_{4} \mathbf{O R}$ Iron(II) sulfate - Test 1: Fe^{2+} present - Test $2: \mathrm{SO}_{4}{ }^{2-}$ present D is $\mathrm{Fe}(\mathrm{OH})_{2} \mathrm{OR}\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]$ OR iron(II) hydroxide \mathbf{G} is $\mathrm{BaSO}_{4} \mathrm{OR}$ barium sulfate C is $\mathrm{CrCl}_{3} \mathrm{OR}$ chromium(III) chloride - Test 1: Cr^{3+} present - Test 3: Cl -present E is $\mathrm{Cr}(\mathrm{OH})_{3} \mathbf{O R}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right] \mathbf{O R}$ chromium(III) hydroxide \mathbf{F} is $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right) 6\right]^{3+}$ His silver chloride OR AgCl Equations D: $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O} \mathrm{OR}$ $\mathrm{Fe}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2} \mathrm{OR}$ $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{H}_{2} \mathrm{O}$ OR $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{NH}_{4}{ }^{+}$ OR $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NH}_{4}{ }^{+}$ E: $\quad\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}+6 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{Cr}^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3} \mathrm{OR}$ $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]+3 \mathrm{H}_{2} \mathrm{O}$ OR $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]+3 \mathrm{NH}_{4}{ }^{+} \mathrm{OR}$

Question		Answer	Marks	AO element	Guidance
(b)	(i)	Ni : S : $\mathrm{N}=\frac{16.26}{58.7}: \frac{35.36}{32.1}: \frac{31.0}{14}$ OR $0.277: 1.10: 2.21$ OR1:4:8 $\begin{aligned} & x=4 \checkmark \\ & 2+x+y=8 \quad y=2 \checkmark \end{aligned}$	3	$\begin{aligned} & 3.1 \times 1 \\ & 3.2 \times 2 \end{aligned}$	ALLOW any correct method ALLOW NiS4 ${ }_{8}$ for ratio ALLOW ECF for y from incorrect x
	(ii)	+2 \checkmark	1	2.1	+ required ALLOW 2+
(c)		$\begin{aligned} & n\left(\mathrm{MnO}_{4}^{-}\right) \text {in titration } \\ & \quad=0.01 \times \frac{12.6}{1000}=1.26 \times 10^{-4} \checkmark \\ & n\left(\mathrm{SO}_{3}^{2-}\right) \text { in } 25.0 \mathrm{~cm}^{3} \\ & \quad=1.26 \times 10^{-4} \times 2.5=3.15 \times 10^{-4}(\mathrm{~mol}) \\ & n\left(\mathrm{SO}_{3}^{2-}\right) \text { in } 250 \mathrm{~cm}^{3} \\ & \quad=10 \times 3.15 \times 10^{-3}=3.15 \times 10^{-3}(\mathrm{~mol}) \end{aligned}$ mass $\mathrm{Na}_{2} \mathrm{SO}_{3}$ in 525 g meat $=3.15 \times 10^{-3} \times 126.1=0.397(\mathrm{~g})^{\checkmark}$ mass $\mathrm{Na}_{2} \mathrm{SO}_{3}$ in 1 kg of meat $=0.397215 \times \frac{1000}{525}=0.7566 \mathrm{~g} \mathrm{OR} 756.6 \mathrm{mg}$ AND less than the maximum permitted level OR AW \checkmark	5	$\begin{aligned} & 1.2 \times 1 \\ & 2.8 \times 3 \\ & 3.2 \times 1 \end{aligned}$	ALLOW 3 SF or more throughout ALLOW ECF throughout Calculator $=0.397215 \mathrm{~g}$ ALLOW within range: 756 to 757 mg ALLOW $0.397 \mathrm{~g}<0.446 \mathrm{~g}$ per 525 g meat.
		Total	15		

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

