Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	/
		/

A-level PHYSICS

Paper 3 Section A

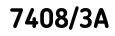
Materials

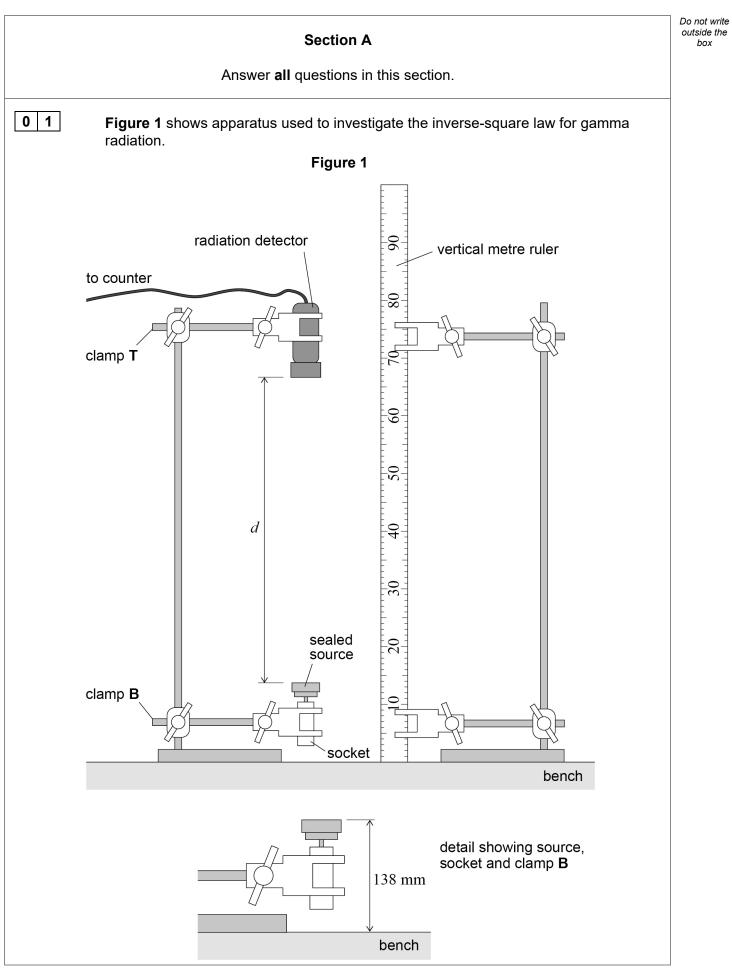
For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet
- a protractor.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

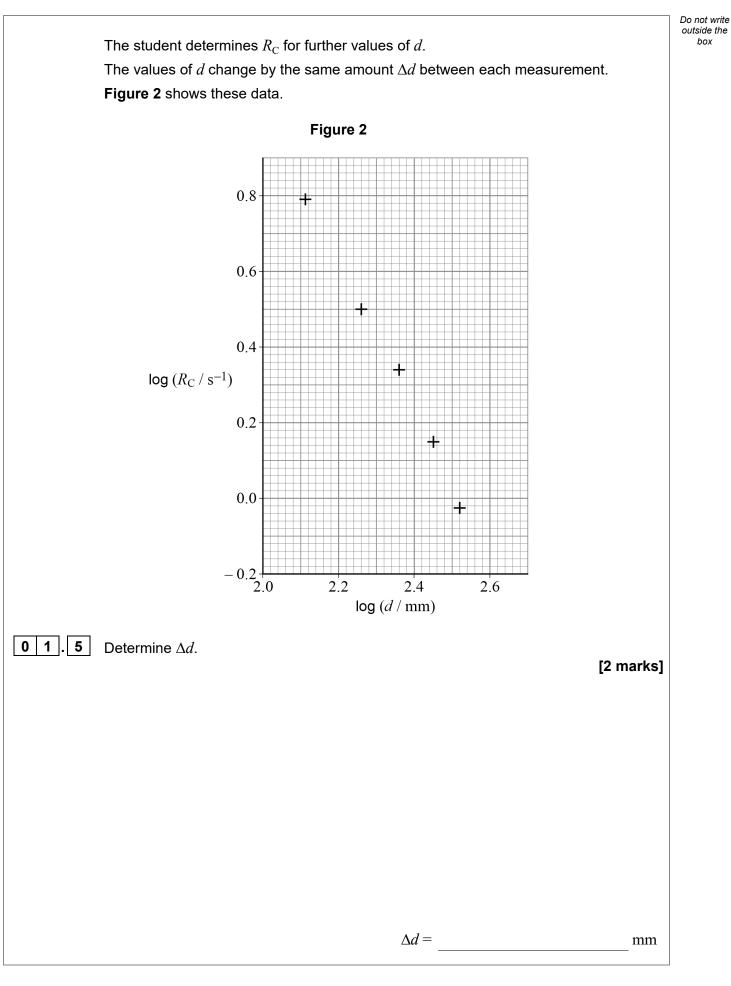

Information


- The marks for questions are shown in brackets.
- The maximum mark for this paper is 45.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

Time allowed: The total time for both sections of this paper is 2 hours. You are advised to spend approximately 70 minutes on this section.

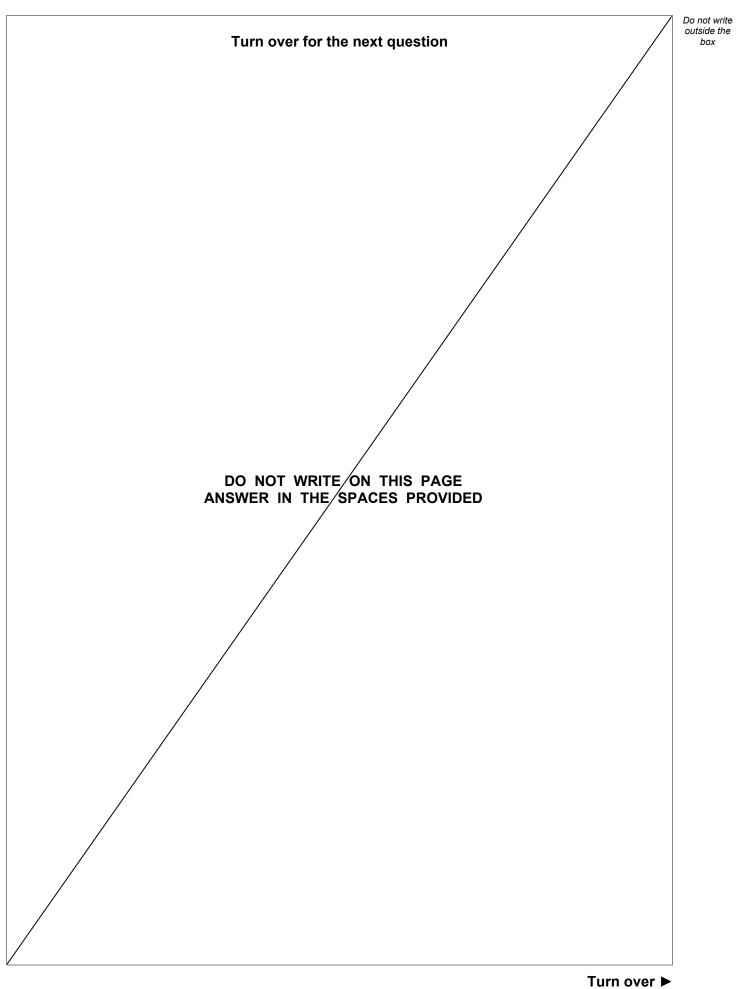
For Examiner's Use					
Question	Mark				
1					
2					
3					
TOTAL					

0 1.1	A sealed source that emits gamma radiation is held in a socket attached to clamp B . The vertical distance between the open end of the source and the bench is 138 mm. A radiation detector, positioned vertically above the source, is attached to clamp T . A student is told not to move the stands closer together. Describe a procedure for the student to find the value of <i>d</i> , the vertical distance between the open end of the source and the radiation detector. In your answer, annotate Figure 1 to show how a set-square can be used in this	Do not write outside the box
	procedure. [2 marks]	
	Question 1 continues on the next page	



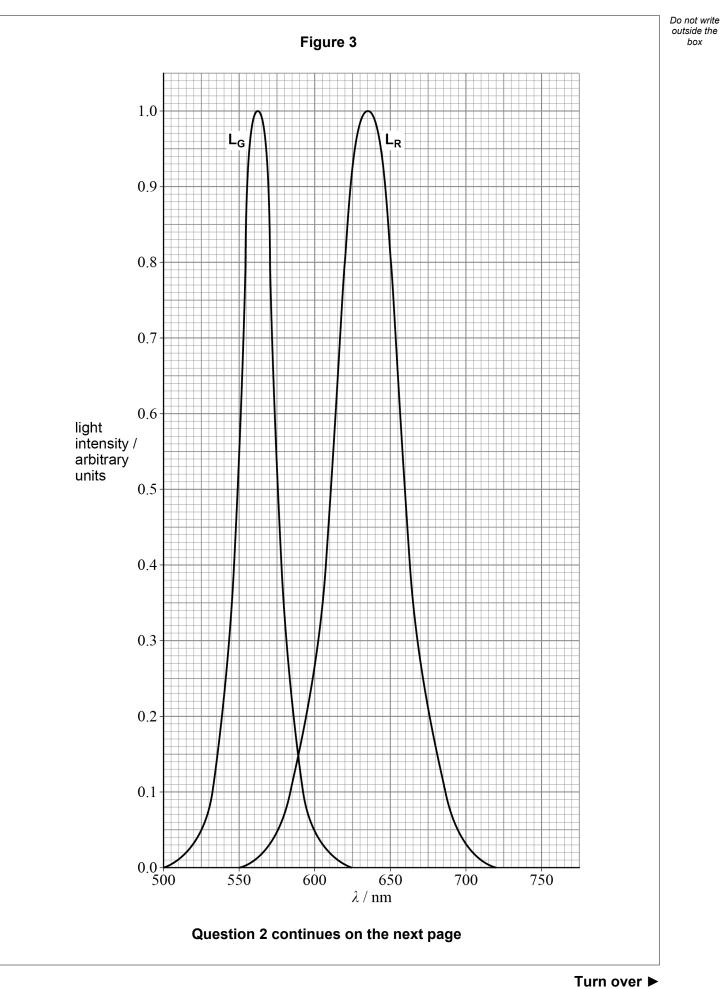
		Do not write outside the
0 1.2	Before the source was brought into the room, a background count $C_{ m b}$ was recorded.	box
	$C_{\rm b} = 630$ counts in 15 minutes	
	With the source and detector in the positions shown in Figure 1 , $d = 530$ mm. Separate counts C_1 , C_2 and C_3 are recorded.	
	$C_1 = 90$ counts in 100 s $C_2 = 117$ counts in 100 s $C_3 = 102$ counts in 100 s	
	$R_{\rm C}$ is the mean count rate corrected for background radiation.	
	Show that when $d = 530$ mm, $R_{\rm C}$ is about 0.3 s ⁻¹ .	
	[2 marks]	

		Do not write
0 1.3	The apparatus is adjusted so that $d = 380$ mm. Counts are made that show $R_{\rm C} = 0.76$ s ⁻¹ .	Do not write outside the box
	The student predicts that:	
	$R_{\rm C} = \frac{k}{d^2}$	
	where k is a constant.	
	Explain whether the values of $R_{\rm C}$ in Questions 01.2 and 01.3 support the student's	
	prediction. [2 marks]]
		_
		-
		-
0 1.4	Describe a safe procedure to reduce d . Give a reason for your procedure. [2 marks]]
		_
		_
		_
		-
		-
	Question 1 continues on the next page	-
	Quotien i continuos on the next page	1



IB/M/Jun21/7408/3A

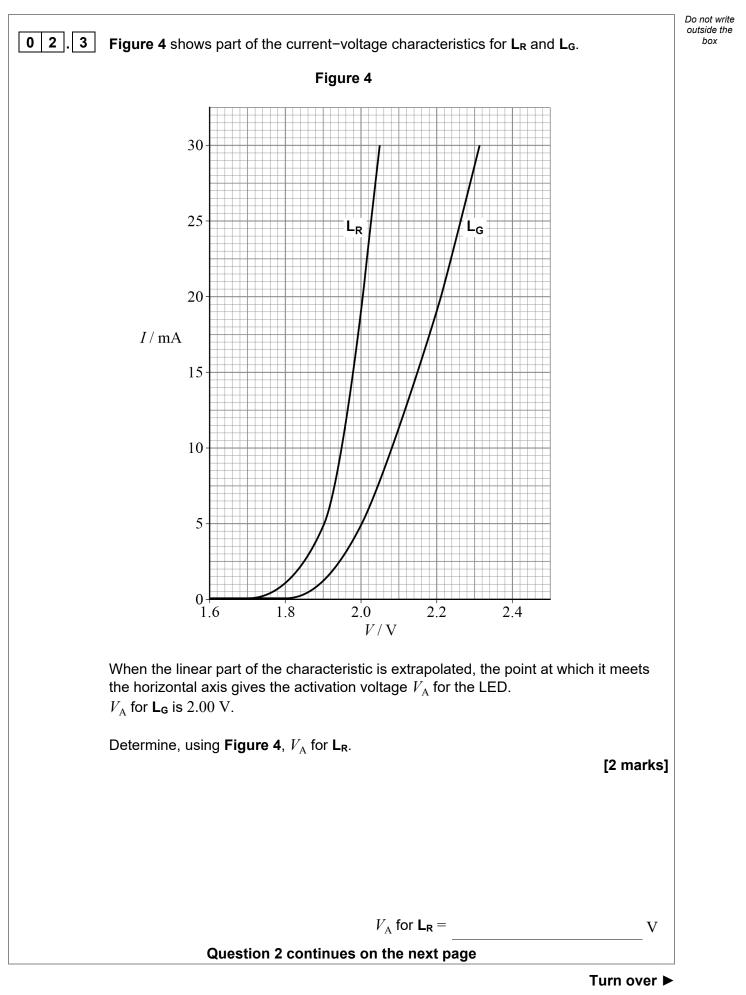
		Do not writ
	When a gamma photon is detected by the detector, another photon cannot be detected for a time $t_{\rm d}$ called the dead time.	outside th box
	It can be shown that:	
	$t_{ m d}=rac{R_2-R_1}{R_1 imes R_2}$	
	where R_1 is the measured count rate R_2 is the count rate when R_1 is corrected for dead time error.	
0 1.7	The distance between the source and the detector is adjusted so that d is very small and R_1 is 100 s^{-1} .	
	On average, two of the gamma photons that enter the detector every second are not detected.	
	Calculate <i>t</i> _d for this detector. [1 mark]	
	$t_{\rm d} = $ s	
0 1.8	A student says that if 100 gamma photons enter a detector in one second and $t_{\rm d}$ is 0.01 s, all the photons should be detected.	
	Explain, with reference to the nature of radioactive decay, why this idea is not correct. [2 marks]	
		16


A light-emitting diode (LED) emits light over a narrow range of wavelengths. These wavelengths are distributed about a peak wavelength λ_p .

Two LEDs L_G and L_R are adjusted to give the same maximum light intensity. L_G emits green light and L_R emits red light.

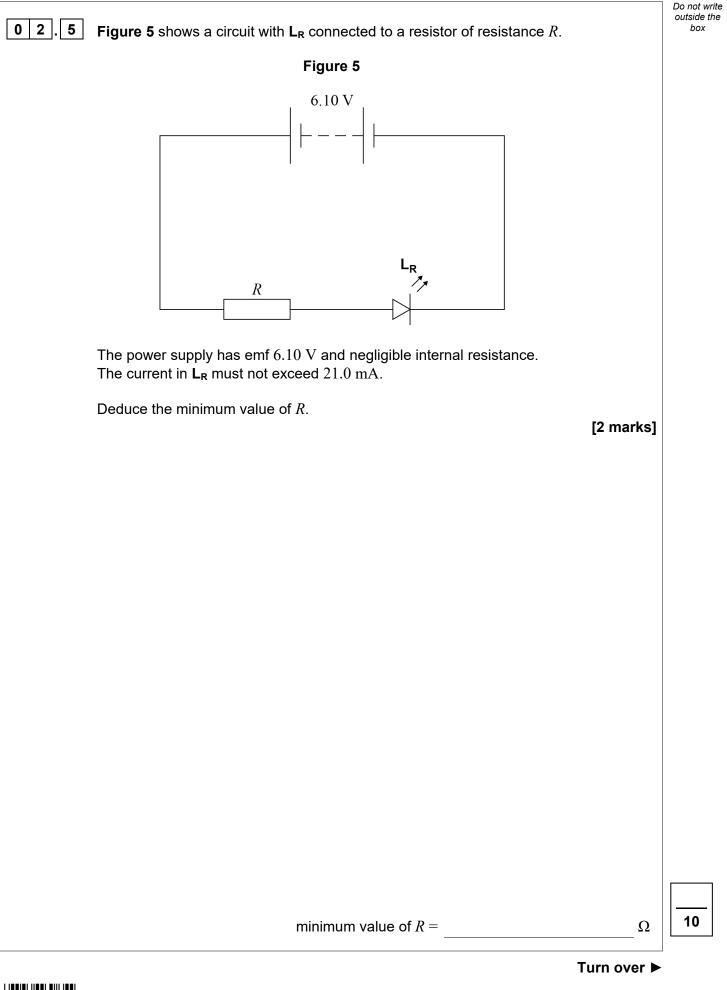
Figure 3 shows how the light output of the LEDs varies with the wavelength λ .

Do not write outside the

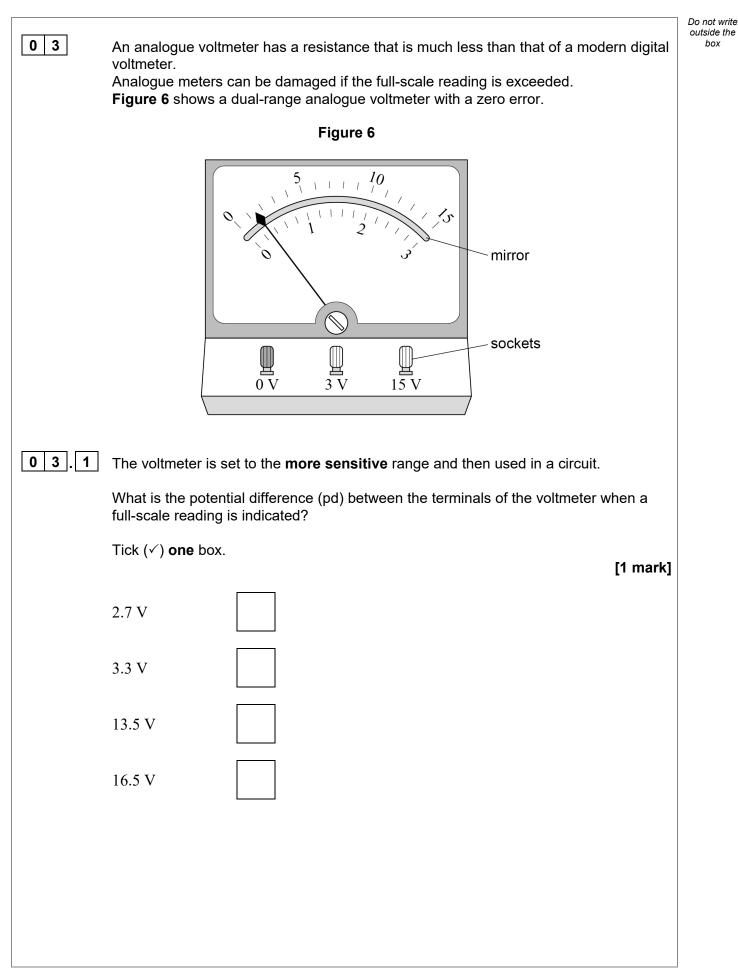


IB/M/Jun21/7408/3A

		Do not write
02.1	Light from L_R is incident normally on a plane diffraction grating. The fifth-order maximum for light of wavelength λ_p occurs at a diffraction angle of 76.3°.	outside the box
	Determine N , the number of lines per metre on the grating. [3 marks]	
	$N = _ m^{-1}$	
02.2	Suggest one possible disadvantage of using the fifth-order maximum to determine N . [1 mark]	

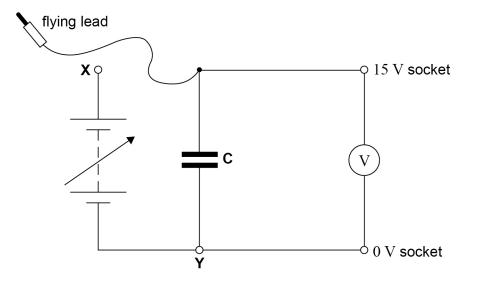

02. 4 It can be shown that:

$$V_{\rm A} = \frac{hc}{e\lambda_{\rm p}}$$


where h = the Planck constant.

Deduce a value for the Planck constant based on the data given about the LEDs. [2 marks]

 $J \ s$


0 3.2	Explain the use of the mirror when reading the meter.		Do not write outside the box
		[2 marks]	
	Question 3 continues on the next page		
	Т	urn over ►	

A student corrects the zero error on the meter and then assembles the circuit shown in **Figure 7**.

The capacitance of the capacitor **C** is not known.

The output pd of the power supply is set to zero.

The student connects the flying lead to socket X and adjusts the output pd until the voltmeter reading is full scale (15 V).

She disconnects the flying lead from socket \mathbf{X} so that \mathbf{C} discharges through the voltmeter.

She measures the time $T_{\frac{1}{2}}$ for the voltmeter reading V to fall from 10 V to 5 V.

She repeats this process several times.

Table 1 shows the student's results, none of which is anomalous.

Table 1

<i>T</i> ½ / s	12.00	11.94	12.06	12.04	12.16
----------------	-------	-------	-------	-------	-------

03.3	Determine the percentage uncertainty in $T_{\frac{1}{2}}$.	Do not write outside the box marks]
	percentage uncertainty =	%
0 3 . 4	Show that the time constant for the discharge circuit is about 17 s. [1	mark]
	Question 3 continues on the next page	

0 3 5

The student thinks that the time constant of the circuit in Figure 7 is directly proportional to the range of the meter. To test her theory, she repeats the experiment with the voltmeter set to the 3 V range. She expects $T_{\frac{1}{2}}$ to be about 2.5 s. Explain: • what the student should do, before connecting capacitor **C** to the 0 V and 3 V sockets, to avoid exceeding the full-scale reading on the voltmeter · how she should develop her procedure to get an accurate result for the time constant how she should use her result to check whether her theory is correct. [4 marks]

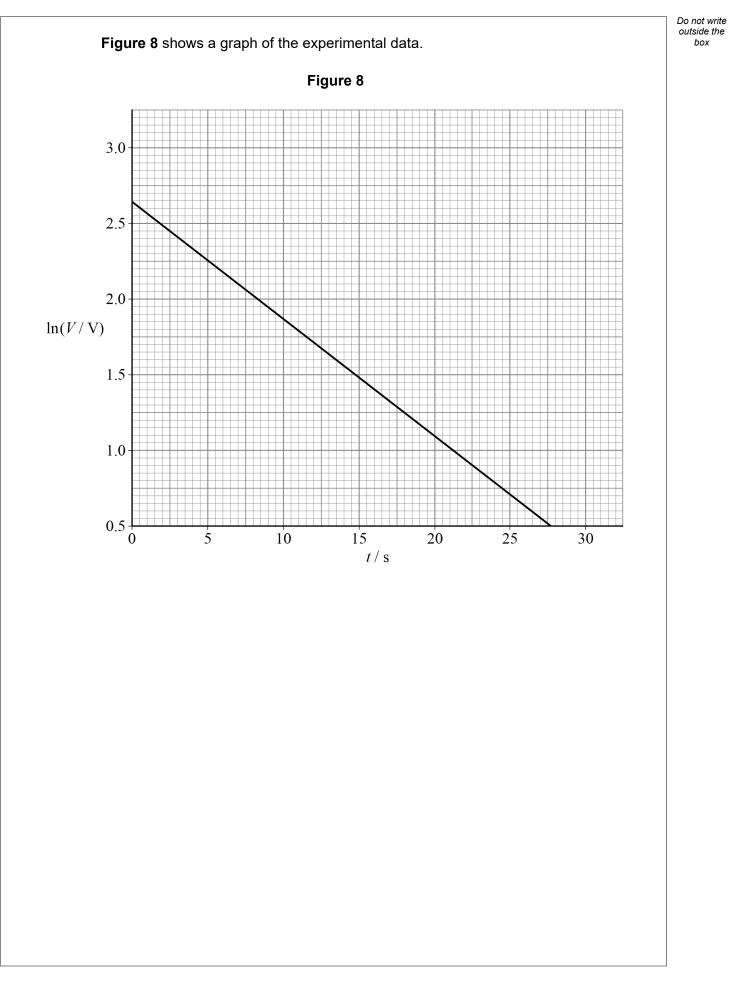
Do not write outside the

Do not write outside the box

21

She replaces \bm{C} with an $820~\mu F$ capacitor and charges it to 15~V.

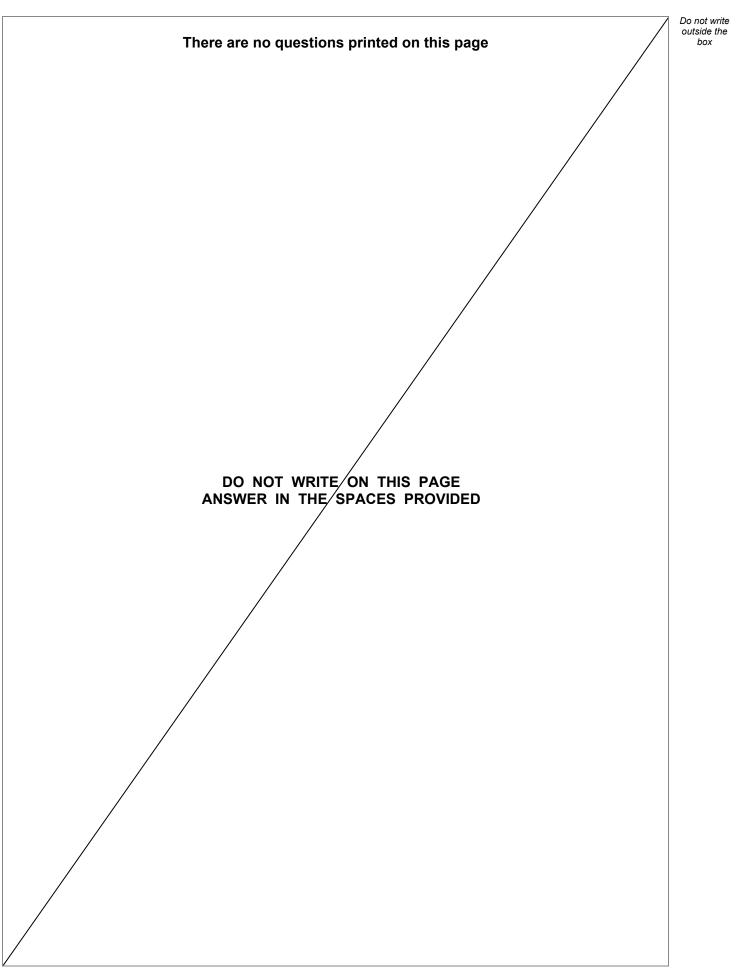
range.


V is 14 V.

The student wants to find the resistance of the voltmeter when it is set to the $15\ \mathrm{V}$

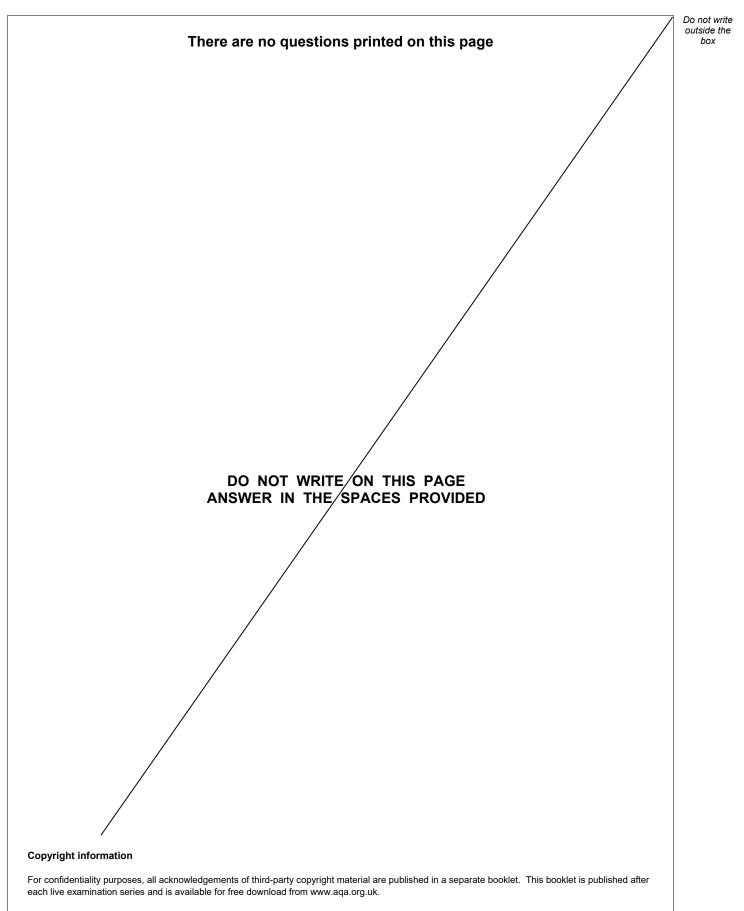
She discharges the capacitor through the voltmeter, starting a stopwatch when

		She r	ecords	the stopwate	ch reading <i>i</i>	t at other val	lues of V as	the capacit	or discharges.
		Table	2 show	vs her result	S.				
					Tab	ole 2			
	V/V		14	11	8	6	4	3	2
	<i>t</i> / s		0.0	3.1	7.2	11.0	16.2	19.9	25.2
0	3.6	Expla	in each	of your ans	wers.	nt selected			n Table 2. [4 marks
				Question	3 continue	es on the n	ext page		
									Turn over



0 3.7	Show, using Figure 8 , that the resistance of the voltmeter is about $16 \text{ k}\Omega$.		Do not write outside the box
	onow, using rigure e , that the resistance of the voluncter is about 10 K22.	[3 marks]	
03.8	Determine the current in the voltmeter at $t = 10$ s.		
	Determine the current in the volumeter at $i = 10$ s.	[2 marks]	
	current =	A	19
	END OF QUESTIONS		

Question number	Additional page, if required. Write the question numbers in the left-hand margin.



Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2021 AQA and its licensors. All rights reserved.

IB/M/Jun21/7408/3A