Mark Scheme (Results) January 2012

GCE Chemistry (6CH01) Paper 01 The Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our qualifications website at www.edexcel.com.

For information about our BTEC qualifications, please call 0844576 0026, or visit our website at www.btec.co.uk.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can contact our Science Subject Advisor directly by sending an email to ScienceSubjectAdvisor@EdexcelExperts.co.uk.

You can also telephone 08445760037 to speak to a member of our subject advisor team.
(If you are calling from outside the UK please dial +441204770696 and state that you would like to speak to the Science subject specialist).

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2012
Publications Code US030260
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. Questions labelled with an asterix (*) are ones where the quality of your written communication will be assessed.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{4}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3 (a)}$	C (1)		
$\mathbf{1 3 (b)}$	D(1)		$\mathbf{2}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 8}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 9}$	A		$\mathbf{1}$

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (a) (i)}$	$\left({\mathrm{Amount} \mathrm{CO}_{2}=0.0584 \mathrm{dm}^{3} \div 24}_{\left.\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)}^{=0.0024333 / 2.4333 \times 10^{-3}(\mathrm{~mol})}\right.$	$0.002 / 2 \times 10^{-3}$ or any other value	$\mathbf{1}$
	IGNORE sf except 1 No working needed Mark final answer	WRONG units with correct numerical answer scores (0)	

Question Number	Acceptable Answers	Reject	Mark
20(a)(ii)	First mark: amount $\mathrm{CO}_{2}=$ amount NaHCO_{3} OR use of candidate's answer to (a)(i) stated (or implied by final answer given) Second mark: $\begin{aligned} & \therefore \text { mass } \mathrm{NaHCO}_{3}=0.0024333(\mathrm{~mol}) \mathbf{x} \\ & \mathbf{8 4}\left(\mathrm{g} \mathrm{~mol}^{-1}\right)=0.2044(\mathrm{~g}) \\ & \text { ALLOW } \mathbf{0 . 2}(\mathrm{g}) \end{aligned}$ This mark is for evidence of multiplying their moles of NaHCO_{3} by 84 IGNORE sf including 1 sf Correct answer with no working scores (2) ALLOW consequentially from (i).		2

Question Number	Acceptable Answers	Reject	Mark
20(a)(iii)	$\begin{align*} & \text { \% purity }=(0.2044 \mathrm{~g} \times 100) \div \\ & 0.227 \mathrm{~g}=90.04 \% \tag{1}\\ & =90 \% \tag{1} \end{align*}$ ALLLOW consequentially from (i) and (ii) NOTE: The second mark to be awarded for 2sf answers less than a 100\% (e.g. 10\% scores (1). This is the percentage impurity) Correct answer with no working scores (2) Can score both marks via moles rather than masses	Answers not to 2 sf or answers incorrectly rounded up do not score $2^{\text {nd }}$ mark Answers > 100\% score (0) overall	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (i)}$	$0.4 / 58.4 \times 100=(\pm) 0.68493(\%)$ IGNORE sf (including 1 sf so (土) 0.7 $(\%)$ is OK here)	(\pm) $1.37(\%)$ etc., as the uncertainty	$\mathbf{1}$
		should NOT be doubled	
		Answers incorrectly	
		rounded (e.g.	
		$0.684 / 0.67 /$	

Question Number	Acceptable Answers	Reject	Mark
20(b)(ii)	Any one of:- CO_{2} dissolves /soluble (in water) CO_{2} reacts (with water) / CO_{2} forms carbonic acid / $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ ALLOW CO_{2} absorbed (by water) IGNORE suggestions to use a gas syringe	" CO_{2} not the only gas given off" CO_{2} diffuses/is lost/mixes with water "Water is also a product of the experiment" "Suck-back"	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i)}$	$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ ALLOW multiples No other species to be allowed IGNORE state symbols even if incorrect	$\mathrm{H}_{2} \mathrm{CO}_{3}$ instead of "H2O $+\mathrm{CO}_{2}$ " on right hand side of equation	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
21(a)(ii)			3
	Mark each point independently First mark: All three formulae in box, ignoring state symbols (even if incorrect) This mark is stand alone, NOT to be marked CQ on answer to (a)(i) Second mark: Two arrows, BOTH pointing downwards Third mark: Left hand arrow labelled as ΔH_{1} AND right hand arrow labelled ΔH_{2} (whatever the direction of the arrows)	Any other formulae	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (\text { iii })}$	$\left(\Delta H_{\text {reaction })=\mathbf{\Delta H}}^{\mathbf{1}} \mathbf{- \Delta \boldsymbol { H } _ { \mathbf { 2 } }}\right.$ This is a stand alone answer NOT to be marked CQ on (a)(ii) and/or (a)(i)	Any other expression	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
21(b)	Any two from: Heat /energy loss OR Heat /energy loss to surroundings OR Heat /energy loss to apparatus Measured under non-standard conditions Specific heat capacity of solutions is approximate Density of solution assumed to be $1 \mathrm{~g} \mathrm{~cm}^{-3} /$ same as (pure) water Large relative error in temperature measurement	"Incomplete reaction" "Incomplete combustion" "Inaccuracy of equipment/apparatus" "Human error" CO_{2} escapes Bond enthalpies Impurity of reactants Transfer losses Side-reactions	2

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	The mark is for the idea of impact by high energy electrons Any ONE of: High-energy electrons Bombard with electrons Fast electrons (fired at sample) Accelerated electrons (fired at sample) (High-energy) electrons fired (at sample) (Sample) blasted with electrons Electron gun	High-density electrons	$\mathbf{1}$
ALLOW "beam of electrons"			
IGNORE any comments (correct or incorrect) re subsequent ionization of the sample			

Question Number	Acceptable Answers	Reject	Mark
22(a)(ii)	Electric field /electrostatic field / charged plates /voltage plates	Positively- charged plates /electronic field /electric current /(electro) magnetic field / electric coil	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
22(a)(iii)	Magnetic field/magnet / electromagnet /magnetic plates/ electromagnetic field	"Negative magnetic field"/ negatively- charged magnet	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark		
22(b)	(Molecular mass of a substance is) that of the molecular ion/parent ion OR (m/e value for) peak/ion of largest mass OR (m/e value for) peak/ion furthest to the right ALLOW "last peak"/"peak at the	Highest peak/ tallest peak/ comments about determination of relative atomic mass	$\mathbf{1}$		
end"				\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
*23(a)	ALLOW reverse arguments in each case Any three from:- - sodium atoms/sodium ions are larger (than magnesium atoms/ions) NOTE: Allow symbols (eg Na or Na^{+}) - sodium ions are Na^{+}whereas magnesium ions are $\mathrm{Mg}^{2+} \mathrm{OR}$ Na^{+}/sodium ions have smaller charge (density) than Mg^{2+} / magnesium ions [NOTE: It follows that the statement that " Na^{+} ions are larger than Mg^{2+} ions" would score the first two scoring points above)] - sodium has fewer delocalized electrons (than magnesium) - attraction between the positive ions and (delocalized) electrons is weaker in sodium (than magnesium) - sodium is not close-packed (but magnesium is close-packed) - less energy needed (to break bonds)	Attraction between nucleus and (delocalized) electrons Mention of intermolecular forces/molecules negates the energy mark NOTE: Arguments based on ionization energies OR suggestion of removal of outer shell electrons as part of the melting process scores (0) overall	3

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \text { *23(b) } & \begin{array}{l}\text { First mark: } \\ \text { Idea of (breaking) covalent bonds } \\ \text { in silicon }\end{array} & \begin{array}{l}\text { Intermolecular } \\ \text { (1) }\end{array} & \mathbf{3} \\ \text { forces broken in } \\ \text { silicon/ covalent } \\ \text { bonds broken in } \\ \text { phosphorus }\end{array}\right]$.

Question Number	Acceptable Answers	Reject	Mark
*23(c)	IGNORE any references to "energy" in this part of the question	Argon monatomic/argon (composed of) single atoms NOTE: This must be stated in words, not just by use of its symbol Ar	Any suggestion that argon is molecular
IGNORE any comments about argon atoms having a full outer shell or argon being a noble gas	Argon having a giant structure (of atoms)	IGNORE any comment about forces/bonds between argon particles	

Question Number	Acceptable Answers	Reject	Mark
*23(d)	First mark:	Mg has mobile electrons/delocalized electrons/free electrons/sea of electrons (to carry the charge)	Mg has free ions/Mg has mobile ions
ALLOW Mg magnesium instead of Mg or	(1)	2	
	Second mark: Sulfur's electrons are fixed (in covalent bonds)/sulfur's electrons are involved in bonding/sulfur's electrons are not free (to move)/no delocalized electrons in sulfur/no mobile electrons in sulfur	(1)	Sulfur has 'no free ions'/sulfur has delocalized electrons/just "sulfur has covalent bonds"/ just "sulfur is not a metal"

Question Number	Acceptable Answers	Reject	Mark
24(a)	First mark: Diagram showing U-tube OR filter paper on a microscope slide OR electrodes in a beaker OR other feasible set-up such as but a + and a - sign must be shown somewhere on the diagram by signs or words, positive and negative. NOTES If set-up in the picture above is used, in addition to the + and - signs a bridge between the two beakers must also be shown. External circuits do not have to be complete (e.g. wires can be shown attached to a slide, provided the + and - labels included). If the words cathode and/or anode are included, for the first mark to be awarded the cathode must be shown as -ve and/or the anode as +ve If a battery symbol shown, IGNORE any incorrect polarities, that is IGNORE any electrode materials EXCEPT Cu^{2+} and/or $\mathrm{CrO}_{4}{ }^{2-}$		4

Question Number	Acceptable Answers	Reject	Mark
24(b)(i)	(Forces of attraction between) oppositely-charged ions/positive and negative ions/cations and anions IGNORE comments about electron transfer	Just ionic bonds/ Just "electrostatic forces of attraction"	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
24(b)(ii)	First mark: Ions of the same charge (repel)/ positive ions (repel)/negative ions (repel) Second mark: Nuclei (of the ions repel) ALLOW 'protons' (in the ions repel) OR Electron clouds OR electrons (in the ions repel)	"Magnetic repulsion" negates first mark "Electrons repel nuclei"	2

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 4 (c) (i)}$	$\mathrm{Mg}^{2+}(\mathrm{g})$ (1) $\mathrm{O}^{2-}(\mathrm{g})$ (1)	$\mathbf{2}$			
	Penalise missing /incorrect state symbols once only				
	Max 1 if include "2e-"			\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
24(c)(ii)	(\mathbf{A} is enthalpy change of) formation (of MgO) ALLOW just " ΔH_{f} " ALLOW (enthalpy change of) combustion of magnesium (\mathbf{C} is) (sum of) first plus second ionization energies (of Mg) / $\begin{equation*} I E_{1}+I E_{2}(\text { for } M g) \tag{1} \end{equation*}$ ALLOW "first and second ionization energies (of Mg)" IGNORE references to "standard"	"(enthalpy change of) reaction" Just "ionization energy"/ "second ionization energy" (of Mg)	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (c) (i i i)}$	$(\mathbf{F}=)$ A - B - C - D - E NOTE: These letters may be in any order, but the signs MUST be correct	$\mathbf{1}$	
ALLOW answers when the enthalpy changes are identified correctly in words or symbols in lieu of the letters			

Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	First mark: $\mathbf{M g}^{\mathbf{2 +}}$ AND $\mathbf{O}^{\mathbf{2 -}}$ higher charge / $\mathbf{M g}^{\mathbf{2 +}} \mathbf{A N D} \mathbf{O}^{\mathbf{2 -}}$ higher charge density (than Mg^{+}and O^{-}) NOTE: both ions needed Second mark: Mg^{2+} smaller (than Mg^{+}) IGNORE comparisons of the relative sizes of O^{-}with O^{2-} even if INCORRECT IGNORE any references to polarization (of ions) and/or covalent character	Any mention of 'intermolecular forces' scores (0) overall for this question	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (d) (i i) ~}$	(Lattice energy of $\mathrm{Mg}^{2+} \mathrm{O}^{2-}$ is) more exothermic/more negative	"energy required" OR Lower/less/ smaller	$\mathbf{1}$
ALLOW greater/increased/higher/ more/larger/bigger IGNORE "stronger lattice"	l		

N.B. Throughout, ALLOW $\mathrm{C}_{2} \mathrm{H}_{6}$ for $\mathrm{CH}_{3} \mathrm{CH}_{3}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \bullet$ for $\mathrm{CH}_{3} \mathrm{CH}_{2} \bullet$ and $\mathrm{C}_{4} \mathrm{H}_{10}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ etc

If CH_{4} used instead of $\mathrm{CH}_{3} \mathrm{CH}_{3}$ max (1) mark overall for (a)(i) and (a)(ii) taken together
Then mark (a)(iii) and (a)(iv) CQ as for CH_{4}
IGNORE positions of the dots in free radicals; dots must be shown in each radical

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 5 (a) (i)}$	$\mathrm{CH}_{3} \mathrm{CH}_{3}+\mathrm{Cl} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \cdot+\mathrm{HCl}$ OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \cdot+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{Cl} \cdot$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 5 (a) (i i)}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \cdot+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH} 2 \mathrm{Cl}+\mathrm{Cl} \cdot$ OR $\mathrm{CH}_{3} \mathrm{CH}_{3}+\mathrm{Cl} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \cdot+\mathrm{HCl}$ N.B. different answers for (i) and (ii) needed	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
25(a)(iii)	$2 \mathrm{CH}_{3} \mathrm{CH}_{2} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \cdot+\mathrm{Cl} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	$\mathrm{Cl} \cdot+\mathrm{Cl} \cdot \rightarrow \mathrm{Cl}_{2}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
25(a)(iv)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \cdot+\mathrm{Cl} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ OR $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	$\mathbf{1}$	
	N.B. different answers for (iii) and (iv) needed		

Question Number	Acceptable Answers	Reject	Mark
25(b)	First mark: Structural formula (enough to see the structure) of any polyhalogenated ethane derivative OR any polyhalogenated methane derivative	$\mathrm{Butane} / \mathrm{C}_{4} \mathrm{H}_{10} /$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} /$ chlorobutane / hexane / chloromethane	2
	ALLOW correct displayed or skeletal formula	(1)	
Second mark: If first mark awarded the name must be consequentially correct	IGNORE any missing or incorrect numbering in name (e.g. "dichloroethane" scores the mark)	IGNORE missing or incorrect hyphens	If first mark NOT awarded then only ALLOW correct name of any polyhalogenated ethane or polyhalogenated methane derivative

Question Number	Acceptable Answers	Reject	Mark
25(c)(i)	$1^{\text {st }}$ mark for HAZARD: This mark is for the idea of: (substance or procedure that) can cause harm/may cause harm/has the potential to do harm/can be dangerous ALLOW references to specific hazards such as toxic/flammable /harmful/ irritant /corrosive /oxidizing/ carcinogenic for the mark $\mathbf{2}^{\text {nd }}$ mark for RISK: This mark is for the idea of likelihood/probability/chance that harm will result (from the use of a substance or a procedure)	Just "causes harm"/just "is a danger"	2
Question Number	Acceptable Answers	Reject	Mark
25(c)(ii)	fume cupboard OR gloves OR u.v. goggles	Just ’open windows'/Just well-ventilated lab/Just 'gas mask'/Just "use of smaller quantities"/close d system/closed experiment	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 6 (a)}$	$\left(\mathrm{C}_{n} \mathrm{H}_{2 n}\right.$ could be a) ring / cyclic (compound) ALLOW identification of any specific cyclic compound (e.g. cyclohexane)	I IGNORE any reference to "fewer hydrogen atoms"	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 6 (b) (\mathbf { i })}$	$\widehat{*}+\mathbf{H}_{2} \longrightarrow$		$\mathbf{1}$
	All must be correct for the mark		

Question Number	Acceptable Answers	Reject	Mark
26(b)(ii)	First mark:- An equation with the reactants shown correctly and EITHER 2-bromopropane OR 1-bromopropane shown as the product NOTE: The $\mathrm{C}-\mathrm{Br}$ bond MUST be shown in the skeletal formula for the first mark Second mark (stand alone, even if no equation attempted or left-hand side of equation incorrect):- Correct skeletal formula of 2-bromopropane Penalise lack of skeletal formulae once only in (b)(i) and (b)(ii) when taken together		2

Question Number	Acceptable Answers	Reject	Mark
26(c)	 attack of bromide ion (1) First mark: Curly arrow from $\mathrm{C}=\mathrm{C}$ to H (in $\mathrm{H}-\mathrm{Br}$) AND curly arrow from bond in $\mathrm{H}-\mathrm{Br}$ to the Br IGNORE polarity of HBr even if incorrect Second mark: Structure of correct secondary carbocation Third mark: Curly arrow from anywhere on the bromide ion towards the $\mathrm{C}+$ on the carbocation NOTE: The bromide ion must have a full negative charge, but the lone pair of electrons on the Br^{-} NEED NOT be shown NOTE: A correct mechanism leading to the formation of 1-bromopropane scores the first and third marks only (so max (2)) Skeletal formulae can be used	Full + and charges on HBr Extra / spare bond dangling from the C+ carbon δ^{-}on bromide ion instead of Br^{-}	3

	If but-2-ene is the starting alkene, only 3 $3^{\text {rd }}$ mark can be awarded If but-1-ene is the starting alkene, 2 nd mand $3^{\text {rd }}$	
If single-headed arrows used throughout but all else correct, then max (2) can be awarded for mechanism		

TOTAL FOR SECTION B $=\mathbf{6 0}$ MARKS
TOTAL FOR PAPER $=\mathbf{8 0}$ MARKS

Further copies of this publication are available from
International Regional Offices at www.edexcel.com/international

For more information on Edexcel qualifications, please visit www.edexcel.com

Alternatively, you can contact Customer Services at

