

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY

F324 MS

Unit F324: Rings, Polymers and Analysis

Specimen Mark Scheme

The maximum mark for this paper is **60**.

Question Number	Answer	Max Mark
1(a)(i)	CH₃COOH ✓	[1]
(ii)	$C_6H_5NO_2 \checkmark$	[1]
(iii)	CH ₃ CH ₂ CH ₂ NH ₂ ✓	[1]
(iv)	CH₃COOH ✓ CH₃CH₂OH ✓	[2]
(v) (vi)		[1]
		[2]
(b)(i)	C ₁₃ H ₂₀ O ₃ ✓	[1]
(ii)	ketone ✓ ester ✓ alkene ✓	[3]
(iii)	$\begin{array}{c} O \\ \bullet \\$	[2]

Question Number	Answer	Max Mark
(iv)	possible side effects of other chiral compound ✓ increased costs/difficulty of separating of isomers ✓ using bacteria within synthetic route ✓	[2 max]
2(a)(i)		
(ii)	1 mark for each monomer $\sqrt{}$	[2]
(b)	C=O absorbs radiation/breaks ✓ ester linkage hydrolysed ✓	[2]
(c)(i)	one amide link shown correctly \checkmark glycine and phenylalanine parts shown correctly \checkmark proline linked correctly \checkmark	[3]
(ii)	6√	[1]
(iii)	gas/liquid chromatograph separates the tripeptides \checkmark mass spectrometer produces a distinctive fragmentation pattern \checkmark identification by computer using a spectral database \checkmark	[3]

Question Number	Answer	Max Mark
3(a)(i)	н ^{δ+}	
	δ^+	
	H-COS	
	, Ö ^Š	
	1 mark for each curly arrow $\sqrt{}$	[2]
(ii)	ОН	
	CH ₃ CH ₂ —C	
	H H	[1]
(iii)	electron pair donor √	[1]
()		
(iv)	electron pair on H ⁻ attracted to δ_{+} carbon forming a dative covalent bond \checkmark	
	the double/ π electron pair breaks \checkmark	
	electron pair now on O ⁻	[3]
(b)(i)	radio waves ✓	[1]
(ii)	chemical shift OCH ₂ singlet from chemical shift at $\overline{0} = 3.6 \sqrt{10}$	
	$CH_2C=O$ from chemical shift at $\delta = 2.4 \checkmark$	
	\mathscr{P} requires use of 'chemical shift' and δ for 1st mark in this category	
	splitting/coupling CH ₂ adjacent to CH ₂ from triplet splitting pattern \checkmark	
	$CH_2C=O$ adjacent to CH_3 from quartet splitting pattern \checkmark	
	requires use of 'splitting/coupling' and triplet/quartet for 1st mark in this	
	Calegory CH ₃ CH ₂ COOCH ₃ ✓	[5]
(c)		
	H = c = c'	
	Н Н ∪—Н√	[1]

4(a)(i) Cl_2 HCI [1] Introduces a permanent dipole on Cl₂ / forms Cl⁺/ (ii) $\mathsf{AlCI}_3 \ + \ \mathsf{CI}_2 \ \rightarrow \ \mathsf{AlCI}_4^- \ + \ \mathsf{CI}^+\!/$ $AICI_3 + CI_2 \rightarrow CI^{\delta +} - AICI_3^{\delta -} \checkmark$ [1] (iii) CI_ correct dipole / $\text{Cl}^+ \checkmark$ curly arrow from benzene ring to $Cl^+ / Cl^{\delta+} \checkmark$ intermediate ✓ curly arrow from H to regenerate benzene ring in intermediate \checkmark H^+ as other product \checkmark [4] (iv) electrophilic substitution √ [1] with electrophilic spelt correctly In benzene, π electrons are delocalised/spread out \checkmark (b) In alkenes, π electrons are concentrated between 2 carbons \checkmark Electrophiles attracted more to greater electron density in alkenes ✓ [3] CO √ 5 (a) G: $HCOOH/H_2CO_2 \longrightarrow CO + H_2O \checkmark$ (b) H: $C_{12}H_{22}O_{11} \longrightarrow 12C + 11H_2O \checkmark$ (c) C₄H₈O₂ ✓ I: $2C_2H_6O_2 \longrightarrow C_4H_8O_2 + 2H_2O \checkmark$ Structure: C [7] accept any sensible structure of C₄H₈O₂ **Paper Total** [60]