Write your name here	Other nan	245
Sumanie		
Edexcel IGCSE	Centre Number	Candidate Number
Chemistry Unit: 4CH0 Paper: 2C		
Wednesday 15 June 2011 - Time: 1 hour	– Morning	Paper Reference 4CH0/2C
You must have:		Total Marks
Ruler Candidates may use a calculate	or.	

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.

Information

- The total mark for this paper is 60.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ►

edexcel

advancing learning, changing lives

P38732A ©2011 Edexcel Limited.

1/1/1/1/1/1/

		[]	·			
	0	≥ Helium 4	20 20 100 10 18 18 18	84 Krypton 36 131 Xenon Xenon 54	222 Rn 86 86	
	7		19 Fluorine 35.5 CI 17	80 Bromine 35 127 127 53	210 At Astatine 85	
	Q		16 Sultur Sultur	79 Setenium 34 128 128 Tellurium 52	Polonium 84	
	Ŋ		14 Trogen 31 31 55	75 AS Isenic 33 33 33 122 Sb 51	209 B3 B3 B3	
	4		Silicon Silicon 14	E	207 Pb ^{Lead} ⁸²	
	ო		11 Boron 5 Aluminium 13	70 Gallium 31 115 115 19 49	204 TI B11 B1	
				65 Zn Zinc 30 112 112 Cd 48	201 Hg Mercury B0	
TABLE				63.5 6.0 Copper 29 29 29 29 29 29 29 29 29 47		
THE PERIODIC TABLE				59 Nickel 28 28 28 28 46 46	195 Ptatinum 78	
IE PEP				59 CCO Cobait 27 103 A5 45	192 Ir 77 77	
Ļ					190 Osmium 76	ه غز ا
	Group	Hydrogen 1		55 Mn Manganese 25 99 99 7 Technetium 7	186 Re 75	Key Relative atomic mass Symbol Name Atomic number
	C			52 55 55 Cr Mn Chromium Manganese 24 25 96 99 Mo Tc Mo Tc Mobdenum Technetium 42 43	184 W Tungsten 74	
				Vanadium 23 93 83 841 M	181 Ta Tantalum 73	
				E E	179 Haffnium 72	
				45 Scandium 21 89 89 39 39		
	0		9 Be Beryllium 4 Agnesium 12		137 Barium La 56 226 Radium 88	
			Mitthium B 3 3 3 3 2 3 2 3 Me dium Me	-		

1 A small piece	Answer ALL quest	ions.	
1 A small piece			
1 A small piece of potassium is added to water.			
The list below	shows some statements.		
Only four of the	hese statements describe what happens wh	nen potassium reacts with water.	
Place a cross ((\boxtimes) in the box next to each of the four con	rrect statements.	
рс	otassium oxide solution is formed	\boxtimes	
fiz	zzing occurs	\boxtimes	
рс	otassium sinks to the bottom of the water	\boxtimes	
рс	otassium moves around	\boxtimes	
рс	otassium melts	\boxtimes	
່ວນ	ubbles of oxygen gas are produced	\boxtimes	
a	lilac flame is seen	\boxtimes	
рс	otassium reacts to form an acidic solution	\boxtimes	
		(Total for Question 1 = 4 marks)	

ve the name of) a solid that conducts electricity.) a metal ore.) a substance formed in the Haber process.	(1)
) a metal ore.	(1)
a substance formed in the Haber process.	(1)
	(1)
) a substance used to make soap.	(1)
a substance used to make fertilisers.	(1)
(Total for Question 2 = 5 ma	

BLANK PAGE

3 The photograph shows the planet Venus.

Although Venus is similar in size to the Earth, it is very different in other ways.

The temperature at the surface of Venus is about 470 °C. The atmospheric pressure is 90 times that of the Earth.

The clouds in the atmosphere of Venus are made up of droplets of sulfuric acid.

The table lists some properties of metals that could be used to make a space probe to land on Venus.

Metal	Melting point in °C	Relative density	Reaction with sulfuric acid
copper	1083	8.9	no reaction
lead	328	11.3	no reaction
magnesium	650	1.7	fizzes vigorously
nickel	1453	8.9	fizzes slowly
titanium	1675	4.5	no reaction
zinc	420	7.1	fizzes quite vigorously

 (ii) Why would this metal be unsuitable for making a probe to land on Venus? (1) (1) (1) (1) (1) 	(1) g a probe to
	be to land on (1)
a) (i) Which metal in the table could be used to make a probe with the low	

5 When soap is shaken with water, a lather forms. A lather is a collection of small bubbles that form on the surface of the water.

Very little soap is needed to form a lather with pure water.

Water that needs a much larger quantity of soap to form a lather is called hard water.

Water becomes hard when certain compounds are dissolved in it.

A student carried out an experiment to find out which compounds make water hard.

This is the method she used.

- Equal amounts of five different compounds were dissolved in equal volumes of pure water in separate test tubes.
- Soap solution was added to each test tube, one drop at a time. One drop of soap ٠ solution has a volume of 0.05 cm^3 .
- The test tubes were shaken after each addition of soap solution. Soap solution was added drop by drop until a lather formed on shaking.
- The volume of soap solution needed to form a lather was recorded.
- The experiment was repeated three times with each compound.
- Pure water was also tested in the same way.

Her results are shown in the table:

Commound	Volume of soap solution needed to form a lather in cm ³				
Compound	Experiment 1	Experiment 2	Experiment 3		
sodium chloride	0.10	0.15	0.10		
magnesium chloride	1.60	1.70	1.65		
calcium chloride	2.15	2.30	2.25		
potassium chloride	0.10	0.05	0.10		
iron(II) chloride	1.95	4.30	1.90		
pure water	0.10	0.10	0.10		

(a) Name two compound	s that made the water hard.	(2)
	and carry out the experiment three times with each compound?	(1)
	lous result in the table. student have done after she identified this anomalous result?	(1) (1)
should use to add the beaker burette	one box next to the name of the apparatus that the student soap solution.	(1)
	(mean) volume of soap solution needed to form a lather with de solution. Give your answer to two decimal places.	(2)
	Average (mean) =	cm ³

7 Sodium azide (NaN₃) is a stable compound at room temperature but decomposes when heated to 300 °C. The equation for the decomposition is:

 $2NaN_3(s) \rightarrow 2Na(l) + 3N_2(g)$

Sodium azide is used to produce nitrogen gas to inflate car airbags.

If a car is involved in a collision, the sodium azide decomposes.

The nitrogen gas is produced very rapidly and the airbag inflates almost immediately.

(a) (i) A fully-inflated airbag has a total volume of 108 dm³.
Calculate the amount of nitrogen, in moles, in a fully-inflated airbag.
[You should assume that the volume of one mole of nitrogen inside the airbag is 24 dm³]

(2)

Не
(1)
(1)
(3)

(iii) Using your answer to (d)(ii), calculate the concentration, in mol/dm³, of the diluted sulfuric acid.	
Concentration of the diluted sulfuric acid = mol/dm ³ (iv) Using your answer to (d)(iii), calculate the concentration, in mol/dm ³ , of the original , concentrated sulfuric acid. (1)	
Concentration of the original, concentrated acid = mol/dm^3 (Total for Question 8 = 11 marks)	
(TOTAL FOR PAPER = 60 MARKS)	

l

BLANK PAGE

