

GCSE MATHEMATICS 8300/2H

Higher Tier Paper 2 Calculator

Mark scheme

November 2018

Version: 1.0. Final

18bG83002H/MS

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments
	A and B	B1	
1	Add	itional G	uidance

	(1, 5)	B1		
2	Additional Guidance			

	1 3 9 27 81	B1			
3	Additional Guidance				

	130°	B1			
4	Additional Guidance				

	Pi or π	B1	accept a value in range [3.14, 3.142]		
	Additional Guidance				
5	5Accept incorrect spelling if intention is clear eg accept pieAnswer (C =) πd B0				
	Answer (C =) πd (k =) π	B1			

Question	Answer	Mark	Commer	nts
	2.5 × 12 or 30 and 7.5 × 7 or 52.5 and 12.5 (× 1) or 95	M1	allow one incorrect midpoint or $[2, 3] \times 12$ and $[7, 8] \times 7$ and $[12, 13] (\times 1)$ ignore $t \ge 15$ row	
6(a)	$\frac{\text{their } 30 + \text{their } 52.5 + \text{their } 12.5}{12 + 7 + 1}$ or 95 ÷ 20	M1dep	t \ge 15 product must be 0 if seen condone bracket error seen eg 30 + 52.5 + 12.5 ÷ 20	
	4.75	A1	accept 4.8 or 5 if full working shown using correct midpoints	
	Additional Guidance			
	Two correct from 30, 52.5 and 12.5 implies the first mark and could be used to score up to M2			M1
	Midpoints used in the ranges [2, 3], [7, 8] and [12, 13] must be seen eg 2.5 \times 12 and 7 \times 7 and 12 (\times 1)			M1
	NB These could be used to score up to M2			
	Correct products seen in the table but a different method shown in the working lines eg $20 \div 4 = 5$			МО
	Lower then part (a)	D4		

	Lower than part (a)	B1			
6(b)	Additional Guidance				

Question	Answer	Mark	Commer	nts
	Alternative method 1			
	35x + 6x = ax or $35 + 6 = aor 41x = ax$	M1		
	<i>a</i> = 41	A1		
	40 + 3 <i>b</i> = 13	M1	Oe	
	<i>b</i> = –9	A1	SC3 $a = 41, b = -27$ or	$a = 41, b = \frac{5}{3}$
	Alternative method 2			
	35x + 40 + 6x + 3b or $41x + 40 + 3b$	M1		
	35x + 6x = ax or $35 + 6 = aand40 + 3b = 13$	M1dep	oe eg $41x = ax$ and $3b = b$	-27
_	<i>a</i> = 41	A1	implies first M1 only	
1	<i>b</i> = –9	A1	SC3 $a = 41, b = -27$ or	$a = 41, b = \frac{5}{3}$
	Additional Guidance			
	a = 41 and $b = -9$			M1A1M1A1
	a = 41 or $b = -9$			M1A1
	35x, 40, $6x$ and $3b$ seen without additional set of the set o	tion signs :	shown or implied	MO
	35x + 40 + 6x + b leading to an answ	er of $a = 4$	1 and <i>b</i> = -27	SC3
	$35x + 8 + 6x + 3b$ leading to an answer of $a = 41$ and $b = \frac{5}{3}$			SC3
	35x + 8 + 6x + b leading to an answer of $a = 41$ and $b = 5$			M1A1
	a = 41x			MO
	For $\frac{5}{3}$ accept 1.66 or 1.67			
	Condone multiplication signs eg 35 x	<i>x</i> for 35 <i>x</i>		

Question	Answer	Mark	Commen	its
	12 × 6 or 72	M1	oe area of rectangle	
	π×6 ² or 36π or [113, 113.112]	M1	oe may be implied eg $\pi \times 6^2 \div 4$ or 9π or [28.2, 28.3]	
	π×6 ² ÷2 or 18π or [56.4, 56.6]	M1dep	oe dep on 2nd M1	
	[15.4, 15.5] or 72 – 18π	A1		
8	Additional Guidance			
	$72 - 18\pi = 54\pi$			M1M1M1A0
	$\pi \times 6^2 \div 2$ scores 2nd and 3rd M1			
	$12 \times 6 = 72$ $72 \div 2 = 36$ (unless identified as half of rectangle)			(1st) M0
	$\pi \times 6^2$ scores 2nd M1 even if subsequently used incorrectly eq. $\pi \times 6^2 = 36\pi$			
	$36\pi \times 2 = 72\pi$			(2nd) M1
	Ignore units throughout			

Question	Answer	Mark	Comments	
	Alternative method 1 comparing with	n 7.5 minut	es	
	180 ÷ 135 or 180 ÷ 14 or 79.8 ÷ 14 or 79.8 ÷ 135	M1	oe or reciprocals	
-	$\frac{14 \times 135}{180} \text{ or } 10.5$ or $\frac{79.8 \times 180}{135} \text{ or } 106.4$	M1dep	oe or reciprocals	
-	$\frac{79.8 \times 180}{14 \times 135}$ or 7.6	M1dep	oe eg 79.8 ÷ 10.5 or 106.4 ÷ 14	
9	No and 7.6 (and 7.5)	A1	oe eg No and 7 minutes 36 seconds (and 7 minutes 30 seconds)	
	Alternative method 2 comparing with 79.8 litres			
	135 ÷ 180 or 14 ÷ 180 or 7.5 × 14 or 7.5 ÷ 180	M1	oe or reciprocals	
	$\frac{14 \times 135}{180} \text{ or } 10.5$ or $\frac{7.5 \times 135}{180} \text{ or } 5.625$	M1dep	oe or reciprocals	
-	$\frac{7.5 \times 135 \times 14}{180} \text{ or } 78.75$	M1dep	oe eg 10.5 × 7.5 or 5.625 × 14	
	No and 78.75	A1		

Alternative methods and Additional Guidance continued on the next two pages

Question	Answer	Mark	Comments		
	Alternative method 3 comparing with 14 litres per minute				
	180 ÷ 135 or 180 ÷ 7.5 or 79.8 ÷ 135 or 79.8 ÷ 7.5	M1	oe or reciprocals		
-	$\frac{7.5 \times 135}{180} \text{ or } 5.625$ or $\frac{79.8 \times 180}{135} \text{ or } 106.4$	M1dep	oe or reciprocals		
-	$\frac{79.8 \times 180}{7.5 \times 135} \text{ or } [14.18, 14.19]$	M1dep	oe		
	No and [14.18, 14.19]	A1			
	Alternative method 4 comparing new rate of flow with rate required				
9	135 ÷ 180 or 14 ÷ 180	M1	oe or reciprocals		
cont	$\frac{14 \times 135}{180}$ or 10.5	M1dep	oe		
	79.8 ÷ 7.5 or 10.64	M1	oe		
	No and 10.5 and 10.64	A1			
	Alternative method 5 comparing with 135 degrees				
	180 ÷ 14 or 180 ÷ 7.5 or 79.8 ÷ 14 or 79.8 ÷ 7.5	M1	oe or reciprocals		
F	180 ÷ 14 and 79.8 ÷ 7.5 or 180 ÷ 7.5 and 79.8 ÷ 14	M1dep	oe or matching reciprocals		
-	$\frac{79.8 \times 180}{7.5 \times 14}$ or 136.8	M1dep	dep on M2		
	No and 136.8	A1			

Additional Guidance continued on the next page

Question	Answer	Mark	Commen	ts
	Additional Guidance			
	No may be implied eg It takes more			
	7.3(0) used for 7.5 may score up to M			
9 cont	$7\frac{1}{2}$ minutes converted to 7.3(0) or 7 minutes 50 seconds			A0
	Ignore incorrect conversion of 7.6 to minutes and seconds if 7.6 seen			
	Use the scheme that awards the most	marks and	d ignore choice	

Question	Answer	Mark	Commen	ts
10	4x + 5 = 6x - 10 or $4x + 5 = 10(x - 4)$ or $6x - 10 = 10(x - 4)$	M1	oe eg $4x + 5 + 6x - 10 = 2x$ condone $10x - 4$ for $10(x)$	< 10(<i>x</i> − 4) <i>x</i> − 4)
	4x - 6x = -10 - 5 or $-2x = -15$ or $4x - 10x = -40 - 5$ or $-6x = -45$ or $6x - 10x = -40 + 10$ or $-4x = -30$	M1dep	oe collection of terms eg $4x + 6x - 20x = -80 - 60$ or $-10x = -75$ condone $10x - 4$ for $10(x)$ eg $4x - 10x = -4 - 5$ or $6x - 10x = -4 + 10$	- 5 + 10 x – 4)
	(<i>x</i> =) 7.5	A1	oe may be implied by (side l or (perimeter =) 105	ength =) 35
	(6 x their 7.5 - 10) x 3 or (4 x their 7.5 + 5) x 3 or 10 x (their 7.5 - 4) x 3 or 35 x 3 or 6 x their 7.5 - 10 + 4 x their 7.5 + 5 + 10 x (their 7.5 - 4) or 20 x their 7.5 - 45 or 105	M1dep	oe dep on M1M1 condone $10x - 4$ for $10(x - 4)$ must show working if M1M1A0	
	105 and Yes	A1	oe eg 1.05 and Yes	
	Ac	Additional Guidance		
	4x + 5 = 6x - 10 = 10(x - 4)			M1
	Condone $10x - 4$ for $10(x - 4)$ for up	to M3		

Question	Answer	Mark	Comme	ents
	3.041	M1	condone 3.042	
	3.14 - 3.041 = 0.09		oe	
	or		condone 3.042 for 3.04	ł1
	3.041 + 0.1 = 3.141	A1		
11	or			
	3.041 and 3.14 – 0.1 = 3.04			
	Additional Guidance			
	Must see calculation for the A mark			
	Do not allow use of a more precise value of π for the A mark			

Question	Answer	Mark	Commer	nts
	2.85 × 10 ⁶	B2	B1 correct value not in a eg 2 850 000 or 28.5 × or 2.9×10^{6}	standard form < 10 ⁵
	Ade	ditional G	uidance	
	Condone different spacing or comma	s eg 2850	0000 or 28,50,000	B1
	2.85.10 ⁶			B1
	2.85×10^6 in working with 2.9×10^6 on answer line			B2
12	2.85×10^6 in working with 3×10^6 on answer line			B2
	2.9×10^6 in working with 3×10^6 on a	B1		
	3 × 10 ⁶ only	B0		
	2.85 × 10 ⁶ in working with 2 850 000	B1		
	2 850 000 in working with 2 900 000	on answei	line	B1
	2 900 000 only			B0
	2 850 000 in working with 2.8 \times 10 ⁶ on answer line			B1
	2.8 × 10 ⁶ only			B0

Question	Answer	Mark	Commen	ts
	Evaluates method		eg1 his method does not 1.2 m does not divide exa	t work because actly by 50 cm
			eg2 there are not a whol 50 cm in 1.2 m	e number of
		B1	eg3 50 cm will not fit in 0).2 m
			eg4 1.2 ÷ 0.5 = 2.4 which number	h is not a whole
			eg5 $120 \div 50 = 2.4$ and cannot have 2.4 boxes	
			eg6 can only fit 2 layers of boxes	
13	Evaluates claim	D1	eg1 he can only fit 40	
		DI	eg2 he will not fit (as many as) 48	
	Ade	ditional G	uidance	
	Volume divided volume doesn't alway	rs work		(1st) B0
	He is wrong as he can put 42 boxes			(2nd) B0
	Only 2 layers will fit so he can't fit 48 boxes			B1B1
	Can't have 0.4 of a box so he can only fit 45 boxes			B1B0
	$5 \times 4 \times 2 = 40$			B0B1

Question	Answer	Mark	Comments
		-	
	3n	B1	
14	Ac	ditional G	Buidance

	Alternative method 1		
	45 ÷ (22 + 3) or 45 ÷ 25 or 1.8	M1	oe eg $\frac{45}{25}$
	22 × their 1.8 or 39.6 or 3 × their 1.8 or 5.4	M1dep	
	their 39.6 × 8.96 + their 5.4 × 7.31 or [354, 355] + [39, 40]	M1dep	
	394.29 or 394.3	A1	
15	Alternative method 2		
	45 ÷ (22 + 3) or 45 ÷ 25 or 1.8	M1	oe eg $\frac{45}{25}$
	their 1.8 × 8.96 or [16.1, 16.13] or their 1.8 × 7.31 or [13.1, 13.2]	M1dep	
	their [16.1, 16.13] × 22 + their [13.1, 13.2] × 3 or [354, 355] + [39, 40]	M1dep	
	394.29 or 394.3	A1	

Alternative method and Additional Guidance continued on the next page

Question	Answer	Mark	Comments		
	Alternative method 3				
	45 ÷ (22 + 3) or 45 ÷ 25 or 1.8	M1	oe eg $\frac{45}{25}$		
	22 × 8.96 or [197, 197.12] or 3 × 7.31 or [21.9, 22]	M1			
15 cont	their [197, 197.12] × their 1.8 + their [21.9, 22] × their 1.8 or [354, 355] + [39, 40]	M1dep	oe dep on M1M1		
	394.29 or 394.3	A1			
	Ad	ditional G	Buidance		
	Allow up to M2 even if not subseque				
	Ignore units throughout				

	106	B1		
16(a)	a) Additional Guidance			

Question	Answer	Mark	Comme	nts
16(b)	50 - 42 or 8 or $\frac{42}{50} \text{ or } \frac{21}{25} \text{ or } 0.84 \text{ or } 84\%$ $\frac{8}{50} \text{ or } \frac{4}{25} \text{ or } 0.16 \text{ or } 16\%$	M1 A1	oe oe	
	Ad			
	Ignore incorrect conversion if correct			
	<u>8</u> 42			M1A0

	could be even or odd	B1		
17	17 Additional Guidance			

Question	Answer	Mark	Commer	nts
	$\frac{10}{10+7+3} \text{ or } \frac{10}{20}$ or $\frac{5}{10}$ or $\frac{1}{2}$ or 0.5	M1	oe eg 50%	
	$\frac{1}{8}$ or 0.125 or 12.5%	A1	oe eg $\frac{1000}{8000}$ or $\frac{125}{1000}$	
	Additional Guidance			
	Ignore incorrect conversion if correct	answer se	een	
18(a)	Answer $\frac{1}{2}$			M1
	10 out of 20			MO
	10 : 20			MO
	Answer 1 out of 8			M1A0
	Answer 1 : 8 is A0 but M1 is possible			
	$\frac{10}{20}$ $\frac{7}{20}$ $\frac{3}{20}$			M1

Question	Answer	Mark	Commer	nts	
	$\frac{10}{19}$ or $\frac{3}{19}$.15, 0.16]			
	$\frac{10}{19} \times \frac{3}{18} (\times 2)$ or $\frac{3}{19} \times \frac{10}{18} (\times 2)$ or $\frac{5}{57} (\times 2)$ or [0.087, 0.088] (× 2)	M1dep	oe eg $1 \times \frac{10}{19} \times \frac{3}{18}$ of allow [0.52, 0.53] × [0.1 or [0.15, 0.16] × [0.55,	or <u>30</u> 6, 0.17] 0.56]	
	10/57 or 0.175 or 17.5%	De			
	Ad				
18(b)	$\frac{7}{20} \times \frac{10}{19} \times \frac{3}{18}$			M1M0A0	
	$\frac{7}{20} \times \frac{3}{19} \times \frac{10}{18}$		M1M0A0		
	If more than one product is seen, the correct one(s) must be selected for 2nd M1				
	$\frac{10}{19} \times \frac{6}{18} + \frac{3}{19} \times \frac{10}{18}$			M1M0A0	
	Both correct products selected but multiplied together scores M1 only $\frac{10}{19} \times \frac{3}{18} \times \frac{3}{19} \times \frac{10}{18}$				
	Ignore incorrect conversion if correct	answer se	en		
	5 out of 57 cannot score 2nd M1 but	implies 1st	: M1		
	5 : 57 cannot score 2nd M1 but 1st M	11 is possil	ble		
	Answer 10 out of 57			M1M1A0	
	Answer 10 : 57 is A0 but M2 or M1M0 is possible				

Question	Answer	Mark	Commer	nts
	4 × 10 or 40		oe eg 50% and 30%	
	and 2×3 or 6			
	or			
	$\frac{2}{4}$ and $\frac{3}{10}$	M1		
	or			
19	0.5 and 0.3			
	$\frac{2 \times 3}{4 \times 10}$ or $\frac{\text{their 6}}{\text{their 40}}$ or 0.15	M1dep	oe eg $\frac{3}{20}$ or $\frac{2}{4} \times \frac{3}{10}$	or 0.5 × 0.3
	15	A1		
	Additional Guidance			
	2:4 and 3:10			MO

Question	Answer	Mark	Comments
20	$\frac{6n^2}{n} + 2n^3$ or $6n + 2n^3$ or $6n^3 - 6n$	M1	expands one bracket correctly allow 3 × 2 <i>n</i> for $\frac{6n^2}{n}$
	$\frac{6n^2}{n} + 2n^3 + 6n^3 - 6n$ or $6n + 2n^3 + 6n^3 - 6n$	M1dep	fully correct expansion allow $3 \times 2n$ for $\frac{6n^2}{n}$
	8n ³ and (2n) ³	A1	must have seen M1M1 oe eg $8n^3$ and $2n \times 2n \times 2n$ or $8n^3$ and $\sqrt[3]{8n^3} = 2n$ condone $8n^3$ and 2^3n^3
	Additional Guidance		
	Do not allow $\frac{2n^2 \times 3}{n}$ for $\frac{6n^2}{n}$		

Question	Answer	Mark	Commer	nts
	Alternative method 1			
	$y = \frac{k}{\sqrt{x}}$	M1	oe equation implied by $4 = \frac{k}{\sqrt{9}}$ oe	
	$(k =) 4 \times \sqrt{9}$ or $(k =) 12$	M1dep	oe	
	$y = \frac{12}{\sqrt{x}}$	A1	oe equation	
	Alternative method 2			
	$ky = \frac{1}{\sqrt{x}}$	M1	oe equation implied by $4k = \frac{1}{\sqrt{9}}$ oe	
21(a)	$(k =) \frac{1}{\sqrt{9}} \div 4$ or $(k =) \frac{1}{12}$	M1dep	oe	
	$\frac{1}{12}y = \frac{1}{\sqrt{x}}$	A1	oe equation	
	Additional Guidance			
	Alt 1 ($k =$) 12 or ($k \alpha$) 12 with no i	M1M1		
	Condone use of α for up to M1M1A0			
	eg (Alt 1) $y \alpha \frac{k}{\sqrt{x}}$			M1
	<i>k</i> α 12			M1dep
	$y \alpha \frac{12}{\sqrt{x}}$			A0
	$y = \frac{12}{\sqrt{x}}$ oe			M1M1A1

Question	Answer	Mark	Commer	nts
	$\frac{12}{\sqrt{25}}$ or $\frac{\text{their }k}{\sqrt{25}}$	M1	0e	
	2.4 or $\frac{12}{5}$ or $2\frac{2}{5}$	A1ft	ft $\frac{\text{their } k}{5}$	
	Ad	ditional G	Buidance	
21(b)	y α 2.4			M1A0
	$y = \frac{4}{\sqrt{x}}$ in (a)			
	$\frac{\frac{4}{3}}{\sqrt{25}}$			M1
	4 15 (allow [0.266, 0.267])			A1ft

Question	Answer	Mark	Commer	nts
	$2(x - 2) = x^{3}(x^{2} - 4)$		numerator or denominat	or factorised
	or $x^{2}(x^{3} - 4x)$ or $x(x^{4} - 4x^{2})$ or $(x^{4} + 2x^{3})(x - 2)$ or $x^{3}(x + 2)(x - 2)$ or $x^{2}(x^{2} + 2x)(x - 2)$ or $x(x^{3} + 2x^{2})(x - 2)$	M1	oe eg $x^{2}(x + 2)(x^{2} - 2x)$	
	3(x - 2) and $x^{3}(x + 2)(x - 2)$ or 3(x - 2) and $(x^{4} + 2x^{3})(x - 2)$ or 3(x - 2) and $x^{2}(x^{2} + 2x)(x - 2)$ or 3(x - 2) and $x(x^{3} + 2x^{2})(x - 2)$	A1	numerator and denominates each with factor $(x - 2)$	ator factorised
22	$\frac{x^{3}(x+2)}{3} \text{ or } \frac{x^{2}(x^{2}+2x)}{3}$ or $\frac{x(x^{3}+2x^{2})}{3}$ or $\frac{x^{4}+2x^{3}}{3}$	A1	oe fully simplified express eg $\frac{1}{3}x^3(x+2)$ or $\frac{x^4}{3}$ +	$\frac{2x^3}{3}$
	Additional Guidance			
	$\frac{x^3(x+2)}{3}$ followed by further incorrect work			M1A1A0
	$\frac{x^3 \times (x+2)}{3}$ or $\frac{1}{3} \times x^3 (x+2)$			M1A1A0
	$3 \times (x - 2)$ and $x^3 \times (x + 2) \times (x - 2)$			M1A1
	$3 \times (x-2)$ or $x^3 \times (x^2-4)$			M1
	1(3x-6) or $-1(6-3x)$			MO
	-3(2 - <i>x</i>)			M1
	$-3(2-x)$ and $-x^{3}(x+2)(2-x)$			M1A1

Question	Answer	Mark	Comments
23	$-\frac{1}{3}\mathbf{a}$	B1	
	Additional Guidance		
	Plots at least three of (0, 6) (-1, -1) (-2, -2)	M1	points may be implied by a curve passing through the points

	Draws $y = f(x - 2)$ or $y = f(x) + 2$ o	y = f(x)	-2	M0A0
	Additional Guidance			
24	Plots (0, 6) (-1, -1) (-2, -2) (-3, -3) (-4, -10) and joins with a smooth curve	A1	points may be implied by through the points tolerance ±2 mm	/ a curve passing
	(-3, -3) $(-4, -10)$	IVII	tolerance ±2 mm	

Question	Answer	Mark	Commer	nts
	$\tan 49 = \frac{AC}{16}$	M1	oe eg tan (90 - 49) = $\frac{16}{AC}$ or $AC^2 + 16^2 = \left(\frac{16}{\cos 49}\right)$)2
	tan 49 × 16 or [18.4, 18.41]	M1dep	oe eg $\frac{16}{\tan (90 - 49)}$ or $\sqrt{\left(\frac{16}{\cos 49}\right)^2 - 16^2}$	
25	$\frac{\sin x}{\text{their} [18.4, 18.41]} = \frac{\sin 35}{20}$ or $\frac{\text{their} [18.4, 18.41]}{\sin x} = \frac{20}{\sin 35}$	M1dep	oe eg $\frac{\sin x}{16 \tan 49} = \frac{\sin 3}{20}$ dep on 1st M1	<u>35</u>)
	$\sin x = \frac{\sin 35}{20} \times \text{their} [18.4, 18.41]$	M1dep	oe eg sin $x = \frac{16 \tan 49 \sin 35}{20}$ or sin ⁻¹ $\left(\frac{\sin 35}{20} \times \text{their } [18.4, 18.41]\right)$ or sin ⁻¹ [0.527, 0.528] dep on 1st and 3rd M1	
	[31.8, 31.9]	A1	allow 32 with full method seen	
	Ad	ditional G	uidance	
	Answer [31.8, 31.9] possibly from sca	ale drawin	9	5 marks
	Answer 32 possibly from scale drawi	ng		Zero

Question	Answer	Mark	Comments
	2 2		
26	$\frac{x^2-2}{x^2-2+2}$ or $\frac{x^2-2}{x^2}$	M1	
	$\frac{x^2}{x^2} - \frac{2}{x^2}$ or $1 - \frac{2}{x^2}$	A1	implied by correct final answer must be two terms oe eg $x^2x^{-2} - 2x^{-2}$
	$1 - 2x^{-2}$ or a = 1 and $b = -2$ and $n = -2$	A1	
	Additional Guidance		

	$\frac{1}{64} = k^3$ or $\sqrt[3]{\frac{1}{64}}$	M1	oe equation in k
27	$(k =) \frac{1}{4}$ or $(k =) 0.25$	Α1	must see working for M1 implied by $y = \left(\frac{1}{4}\right)^{x}$
			$\left(\frac{1}{4}\right)^3 = \frac{1}{64}$ is M1A1
	$\left(\frac{1}{4}\right)^{\frac{1}{2}} = \frac{1}{2}$ or $0.25^{\frac{1}{2}} = 0.5$	A1	must see working for M1A1 allow $\sqrt{\frac{1}{4}} = \frac{1}{2}$ or $\sqrt{0.25} = 0.5$
	Additional Guidance		

Question	Answer	Mark	Commer	nts
	0.25 or $\frac{1}{4}$ or $\frac{2}{8}$	B1		
	m/s ² or ms ⁻² or m/s/s or $\frac{m}{s^2}$	B1	oe eg metres per second per second SC2 acceleration and unit not in m/s ²	
28(a)			eg 25 cm/s ² or 3240 k	m/h ²
	Additional Guidance			
	$\frac{2}{14-6}$ with no further simplification			(1st) B0

	Alternative method 1			
28(b)	$\frac{1}{2} \times 6 \times (v - 2)$ or $\frac{1}{2} \times (14 - 6) \times (v + v - 2)$ or $(14 - 6) \times (v - 2)$ or $\frac{1}{2} \times (14 - 6) \times 2$ or 8	M1	oe partial area any letter	
	$\frac{1}{2} \times 6 \times (v - 2)$ + $\frac{1}{2} \times (14 - 6) \times (v + v - 2)$ or $3(v - 2) + 8(v - 2) + 8$ or $11v - 14$	M1dep	oe full area in one variable eg $14 \times v - \frac{1}{2} \times 6 \times (v - 2)$ $-\frac{1}{2} \times 2 \times (6 + 14)$ implies M2	
	$\frac{1}{2} \times 6 \times (v - 2)$ + $\frac{1}{2} \times (14 - 6) \times (v + v - 2) = 80$ or $94 \div 11$	A1	oe full area in one variable equated to 80	
	8.5(4) or 8.55 or $\frac{94}{11}$ or $8\frac{6}{11}$	A1		

Alternative method and Additional Guidance continued on the next page

Question	Answer	Mark	Comments		
	Alternative method 2				
28(b) cont	$\frac{1}{2} \times 6 \times x$ or $\frac{1}{2} \times (14 - 6) \times (x + x + 2)$ or $(14 - 6) \times x$ or $\frac{1}{2} \times (14 - 6) \times 2$ or 8	M1	oe partial area <i>x</i> is the speed at 6 seconds any letter		
	$\frac{1}{2} \times 6 \times x$ + $\frac{1}{2} \times (14 - 6) \times (x + x + 2)$ or $3x + 8x + 8$ or $11x + 8$	M1dep	oe full area in one variable eg $14 \times (x + 2) - \frac{1}{2} \times 6 \times x$ $-\frac{1}{2} \times 2 \times (6 + 14)$ implies M2		
	$\frac{1}{2} \times 6 \times x$ + $\frac{1}{2} \times (14 - 6) \times (x + x + 2) = 80$ or 72 ÷ 11 or 6.5(4) or 6.55 or $\frac{72}{11}$ or $6\frac{6}{11}$	A1	oe full area in one variable equated to 80		
	8.5(4) or 8.55 or $\frac{94}{11}$ or $8\frac{6}{11}$	A1			
	Additional Guidance				
	First M1 Do not allow 8 from 14 – 6				
	Ignore units throughout				