4721 Core Mathematics 1

			Ţ
1	$3\sqrt{5} + \frac{20\sqrt{5}}{5}$ $= 7\sqrt{5}$	B1	$3\sqrt{5}$ soi
	$=7\sqrt{5}$	M1	Attempt to rationalise $\frac{20}{\sqrt{5}}$
		A1 3 3	cao
2 (i)	x^2	B1 1	cao
(ii)	$\frac{3y^4 \times 1000y^3}{2y^5}$		
	$2y^5$	B1	$1000y^3$ soi
	$=1500y^2$	B1	1500
		B1 3	y ²
3	Let $y = x^{\frac{1}{3}}$	*M1	Attempt a substitution to obtain a quadratic or
	$3y^2 + y - 2 = 0$		factorise with $\sqrt[3]{x}$ in each bracket
	(3y - 2)(y + 1) = 0	DM1	Correct method to find roots
	$y = \frac{2}{3}, y = -1$	A1	Both values correct
	$x = \left(\frac{2}{3}\right)^3, x = (-1)^3$	DM1	Attempt cube of at least one value
	$x = \frac{8}{27}, x = -1$	A1 ft 5	Both answers correctly followed through
			SR If M1* not awarded, B1 $x = -1$ from T & I
4 (i)		B1	Excellent curve in one quadrant or roughly correct curves in correct 2 quadrants
		B1 2	Completely correct
			1
(ii)	$y = \frac{1}{\left(x+3\right)^2}$	M1	$\sqrt{(x\pm3)^2}$
	, ,	A1 2	$y = \frac{1}{\left(x+3\right)^2}$
(iii)	(1, 4)	B1 B1 2	Correct x coordinate Correct y coordinate
	<u> </u>		

5 (i)	dy 50 -6	M1		kx^{-6}
3 (1)	$\frac{dy}{dx} = -50x^{-6}$	A1	2	
		AI	2	Fully correct answer
	1	B1		_ 1
(ii)	$y = x^{\frac{1}{4}}$ $\frac{dy}{dx} = \frac{1}{4}x^{-\frac{3}{4}}$	DI		$\sqrt[4]{x} = x^{\frac{1}{4}} \text{ soi}$ $\frac{1}{4}x^{c}$ $kx^{-\frac{3}{4}}$
	$dy = 1 - \frac{3}{4}$	B1		$\frac{1}{-x^c}$
	$\frac{1}{dx} = \frac{1}{4}x$	B1	3	4
				$kx^{-\frac{3}{4}}$
(iii)	$y = (x^2 + 3x)(1 - 5x)$	M1		Attempt to multiply out fully
	$= 3x - 14x^2 - 5x^3$	A1		Correct expression (may have 4 terms)
	$y = (x^{2} + 3x)(1 - 5x)$ $= 3x - 14x^{2} - 5x^{3}$ $\frac{dy}{dx} = 3 - 28x - 15x^{2}$			
	$\frac{-1}{dx} = 3 - 28x - 13x$	M1		Two terms correctly differentiated from their
		A1	4	expanded expression Completely correct (3 terms)
			•	1 , (2)
		D.1	9	
6(i)	$5(x^2+4x)-8$	B1		p = 5
	$= 5[(x+2)^2 - 4] - 8$	B1		$(x+2)^2 \text{ seen or } q=2$
	$=5(x+2)^2-20-8$	M1		$-8-5q^2$ or $-\frac{8}{5}-q^2$
	$=5(x+2)^2-28$	A1	4	$(x+2)^2$ seen or $q = 2$ $-8-5q^2$ or $-\frac{8}{5}-q^2$ r = -28
	2		·	
(ii)	x = -2	B1 f	t 1	
(iii)	$20^2 - 4 \times 5 \times -8$	M1		Uses $b^2 - 4ac$
	= 560	A1	2	$\frac{660}{560}$
(iv)	2 real roots	B1	1	360
	2.00.1000	ы	1 8	2 real roots
			0	
7(i)	30 + 4k - 10 = 0	M1		Attempt to substitute $x = 10$ into equation of line
	$\therefore k = -5$	A1	2	
(ii)				
	$\sqrt{(10-2)^2 + (-5-1)^2}$ $= \sqrt{64+36}$	M1		Correct method to find line length using Pythagoras' theorem
	$=\sqrt{64+36}$			
	= 10	A1	2	cao, dependent on correct value of k in (i)
(iii)				
	Centre (6, -2)	B1		
	Radius 5	B1	2	
(iv)	Midpoint of $AB = (6, -2)$	D.1		
	Length of $AB = 2 x$ radius	B1	2	One correct statement of verification
	Both A and B lie on circumference	B1	2	Complete verification
	Centre lies on line $3x + 4y - 10 = 0$		8	

8 (i)	$8 \pm \sqrt{(-8)^2 - (4 \times -1 \times 5)}$	M1		Correct method to solve quadratic
	$x = \frac{8 \pm \sqrt{(-8)^2 - (4 \times -1 \times 5)}}{-2}$ $= \frac{8 \pm \sqrt{84}}{-2}$	A1		$x = \frac{8 \pm \sqrt{84}}{-2}$
	$=-4-\sqrt{21}$ or $=-4+\sqrt{21}$	A1	3	Both roots correct and simplified
(ii)	$x \le -4 - \sqrt{21}$, $x \ge -4 + \sqrt{21}$	M1		Identifying $x \le$ their lower root, $x \ge$ their higher root $x \le -4 - \sqrt{21}$, $x \ge -4 + \sqrt{21}$
		A1	2	$x \le -4 - \sqrt{21}$, $x \ge -4 + \sqrt{21}$ (not wrapped, no 'and')
(iii)		B1		Roughly correct negative cubic with max and min
		B1		(-4, 0)
		B1		(0, 20)
		B1		Cubic with 3 distinct real roots
	l	B1	5	Completely correct graph
			10	
9	$\frac{dy}{dx} = 3x^2 + 2px$ When $x = 4$, $\frac{dy}{dx} = 0$	M1 A1		Attempt to differentiate Correct expression cao
		M1		Setting their $\frac{dy}{dx} = 0$
	$3 \times 4^2 + 8p = 0$ $8p = -48$	M1		Substitution of $x = 4$ into their $\frac{dy}{dx} = 0$ to evaluate p
	8p = -48 $p = -6$	A1		
	$\frac{d^2y}{dx^2} = 6x - 12$	M1		Looks at sign of $\frac{d^2y}{dx^2}$, derived correctly from their
	When $x = 4$, $6x - 12 > 0$			$\frac{dy}{dx}$, or other correct method
	Minimum point	A1	7	Minimum point CWO
			7	

10(i)	$\frac{dy}{dx} = 2x + 1$ $= 5$	M1 A1 2	Attempt to differentiate <i>y</i> cao
(ii)	Gradient of normal $= -\frac{1}{5}$ When $x = 2$, $y = 6$ $y - 6 = -\frac{1}{5}(x - 2)$ x + 5y - 32 = 0	B1 ft B1 M1 A1 4	ft from a non-zero numerical value in (i) May be embedded in equation of line Equation of line, any non-zero gradient, their y coordinate Correct equation in correct form
(iii)	$x^{2} + x = kx - 4$ $x^{2} + (1 - k)x + 4 = 0$ One solution => $b^{2} - 4ac = 0$ $(1 - k)^{2} - 4 \times 1 \times 4 = 0$ $(1 - k)^{2} = 16$ $1 - k = \pm 4$ $k = -3$ or 5	*M1 DM1 DM1 A1 DM1 A1 DM1 A1 DM1	Equating $y_1 = y_2$ Statement that discriminant = 0 Attempt (involving k) to use a, b, c from their equation Correct equation (may be unsimplified) Correct method to find k , dep on 1 st 3Ms Both values correct
		12	