Centre										Surname		Initia	l(s)
No.					Pape	r Refer	ence						
Candidate No.			6	C	H	0	5	/	1	Signature			
	Paper Ref	ference(s) H05/1									Examine	's use	only
	E	dexc	el	G	C	E					Team Lead	er's u	se only
	Ch	emis	try										
	Ad	vance	d										
			•••	al P	Princ	inle	es of	f Cł	nem	nistry II		estion mber	Leave Blank
	em					-				ganic		ction A	
								ina	ΟIĘ	Same			
			Ŭ		Che		•		~ ~ ~ ~ ~			ction B	
		(11)	CIU	JUUE	g syl	lop		isse	SSIL	nent)			
	San	nple As	sses	sme	ent I	Mate	eria	1				ction C	
	Tin	ne: 1 ho	our 4	40 ı	nin	ıtes							
		r ials require Booklet	ed for o	exami	nation	. Ito Ni		cluded	l with	question papers			
Instructions to													
In the boxes above Check that you ha	, write you ve the corr	r centre nu ect questio	mber, n pape	candio er.	date ni	imber	, your	surna	me, ir	nitial(s) and signatu	ure.		
Answer ALL the c Some questions m	juestions.	Write your	answe	ers in									
through the box ((and the	n mark you	ır new						your	mind, put a mie			
Do not use pencil.	Use black	k or blue in	k.										
Information for											_		
The marks for ind There are 24 quest).		
There are 28 page Candidates may us			er. An	y blaı	nk pag	es are	indica	ated.					
Advice to Cand	idates												
Quality of written	communic												
Questions $20(d)$, $224(d)(ii)$. These q	uestions ar	re indicated	with	an ast	erisk.	Quali	ty of	writte	n com	munication inclue	les		
clarity of expression	on, the stru	icture and p	present	tation	of ide	as and	l gram	ımar, j	punct	uation and spelling	g.		

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited.

L

_

Edexcel GCE in Chemistry

edexcel

Total

95

Turn over

			SECTION A	Leave blank
r	ninu	tes	ALL the questions in this section. You should aim to spend no more than 25 on this section. For each question, select one answer from A to D and put a e box (⊠). If you change your mind, put a line through the box (₩) and then mark your new answer with a cross (⊠).	
	Eac		f the questions or incomplete statements in this section is followed by four gested answers, A, B, C and D. Select the BEST answer in each case.	
1.	In a	a sta	ndard hydrogen electrode	
	×	A	the hydrogen gas is at one atmosphere pressure	
	×	B	a solution of 1 mol dm ⁻³ sulfuric acid is used	
	×	С	a temperature of 273 K is maintained	
	×	D	a piece of shiny platinum foil is used	Q1
			(Total 1 mark)	
2.	For	a re	edox reaction to be thermodynamically feasible, E_{cell} must be	
	×	Α	positive	
	×	B	negative	
	×	С	greater than +0.3 V	
	×	D	more negative than -0.3 V	Q2
			(Total 1 mark)	

3. The star +1.51 V.	ndard electrode potential for the electrode system based on the equation below is	Leav blan
	$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \implies Mn^{2+}(aq) + 4H_2O(l)$	
Which	of the following statements about the electrode system is correct?	
A	the electrode potential at pH 5 is $+1.51$ V.	
B	Mn ²⁺ (aq) is acting as an oxidising agent.	
C	changing the concentration of $Mn^{2+}(aq)$ would cause a change in the electrode potential.	
D 🛛	the electrode used in this half-cell is made of manganese.	Q3
	(Total 1 mark)	
4		
	of the following is always proportional to E_{cell} for a chemical reaction?	
A	$\Delta H_{ m r}$	
B	$\Delta S_{ m system}$	
C	$\Delta S_{ m surroundings}$	
	$\Delta S_{ m total}$	
D		Q4
⊠ D	(Total 1 mark)	Q4
		Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4
	(Total 1 mark) space for any rough working. Anything you write in this space will gain no	Q4

I

5.				usly oxidised with a nethanoic acid and	an acidified solution containing dichromate(VI) chromic(III) ions.	Leave blank
	(a)	Wl	hat are the oxida	tion numbers of ca	rbon in methanol and methanoic acid?	
			Methanol	Methanoic acid		
	\times	A	-1	+1		
	\times	B	-2	+2		
	\times	С	+1	-1		
	X	D	+2	-2	(1)	
	(b)	Но	w many moles	of methanol react w	with one mole of dichromate(VI) ion, $Cr_2O_7^{2-}$?	
	\times	Α				
	×	B	3⁄4			
	\times	С	11/2			
	×	D	3			
					(1)	Q5
					(Total 2 marks)	
					· · · · · · · · · · · · · · · · · · ·	
6.	Wł	nich	of the following	; will not act as a li	gand in the formation of complexes?	
6.	Wh		of the following C ₆ H ₅ NH ₂	; will not act as a li		
6.				; will not act as a li		
6.	×	A B	$C_6H_5NH_2$; will not act as a li		
6.	×	A B	C ₆ H ₅ NH ₂ CH ₃ NH ₂	; will not act as a li		Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	; will not act as a li		Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	; will not act as a li	gand in the formation of complexes?	Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	; will not act as a li	gand in the formation of complexes?	Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	; will not act as a li	gand in the formation of complexes?	Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	; will not act as a li	gand in the formation of complexes?	Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	; will not act as a li	gand in the formation of complexes?	Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	; will not act as a li	gand in the formation of complexes?	Q6
6.	\propto	A B C	$C_6H_5NH_2$ CH_3NH_2 NH_4^+	; will not act as a li	gand in the formation of complexes?	Q6

7.	Which of the following ground state electron configurations corresponds to an element most likely to form an oxide with catalytic properties?	Leave blank
	\square A $1s^2 2s^2$	-
	\square B 1s ² 2s ² 2p ⁶ 3s ²	-
	\square C $1s^2 2s^2 2p^6 3s^2 3p^2$	-
	$\square \mathbf{D} 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^5 \ 4s^2$	Q7 –
	(Total 1 mark)	
8.	X, Y, and Z are three different compounds from the list below. X and Y react together to form an ester. X and Z also react to give the same ester as X and Y, but less readily.	
	Compound Y could be	
	☑ A propanoyl chloride	-
	\square B propanoic acid	-
	$\mathbf{\Sigma}$ C propan-1-ol	-
	D propanal	Q8 –
	(Total 1 mark)	
9.	Which of the following isomers of $C_4H_{10}O$ has a chiral centre?	
	X Butan-1-ol	-
	B Butan-2-ol	-
	$\mathbf{\Sigma}$ C 2-methylpropan-1-ol	-
	D 2-methylpropan-2-ol	Q9 –
	(Total 1 mark)	
τ	se this space for any rough working. Anything you write in this space will gain no credit.	

l

	e colourless liquid chlorobenzene is shaken with bromine water, the chlorobenzene s a yellow orange colour. What is the interpretation of this?	Leave blank
A	an addition compound of chlorobenzene and bromine has formed.	
B	the chlorine atom has been replaced by a bromine atom.	
C	a hydrogen atom has been replaced by a bromine atom.	
D 🛛	the bromine is more soluble in chlorobenzene than in water.	Q10
	(Total 1 mark)	
	ass of organic compound has a characteristic smell and gives a solution in water H of about 10?	
🛛 A	arene	
🖾 B	amine	
C	aldehyde	
🗵 D	carboxylic acid	Q11
	(Total 1 mark)	
	chemical term best describes what happens, when butylamine is added to a solution per(II) salt?	
A	precipitation	
B	redox	
C	proton transfer	
D	complex formation	Q12
	(Total 1 mark)	

12 The see		Leave blank
$\mathbf{\overline{N}} \mathbf{A}$	pstance of formula (OCH ₂ CH ₂ OOCC ₆ H ₄ COOCH ₂ CH ₂ OOCC ₆ H ₄ CO) _n is a polyester	
B	natural oil or fat	
C	detergent	
D	protein	Q13 -
	(Total 1 mark)	
14. The op	tical isomers of alanine, CH ₃ CH(COOH)NH ₂	
🖾 A	have different melting points	-
B	rotate the plane of plane polarised light in opposite directions	-
C	react at different rates with ethanoyl chloride, CH ₃ COCl	-
D D	both occur naturally in protein molecules	Q14 -
	(Total 1 mark)	
	e equation for the reaction between aqueous sodium hydroxide and o-2-methylpropane is Rate = k[2-chloro-2-methylpropane]	
The firs	t step in the mechanism of this substitution reaction is	
A	nucleophilic attack by OH^- ions on the carbon atom in the C–Cl bond	
B	electrophilic attack by OH^- ions on the carbon atom in the C–Cl bond	
⊠ D ⊠ C	the breaking of the C–Cl bond to form a carbocation	
D	the simultaneous making of a O–C bond as the C–Cl bond breaks	Q15 =
	(Total 1 mark)	
Use this s	space for any rough working. Anything you write in this space will gain no credit.	

	hen hydrogen cyanide, HCN, is added to ethanal, CH_3CHO , the resulting solution has effect on the plane of polarisation of plane polarised light.	Leave blank
Tl	nis is because	
\mathbf{X}	A ethanal is not chiral	
\mathbf{X}	B the product is not chiral	
\times	C the intermediate is planar	
\mathbf{X}	D the product is a racemic mixture	Q16
	(Total 1 mark)	
17. Tv	vo compounds may be similar in that they both have	
Α	dative covalent bonds in their molecules	
В	at least one bond angle of 120° in each molecule	
С	non-polar molecules	
D	linear molecules	
S	elect from A–D, the similarity between each of the compounds below.	
(a) Benzene, C_6H_6 and cyclohexane, C_6H_{12}	
\boxtimes	Α	
\times	В	
\times	C	
\times	D (1)	
(b) Hydrogen cyanide, HCN, and carbon dioxide, CO_2	
\times	Α	
\times	В	
\times	С	
\times	D (1)	Q17
	(Total 2 marks)	

18.	Thi	s question is about the following organic compounds:	Leave blank
	A	Benzene, C_6H_6	
	B	Glycine, NH ₂ CH ₂ COOH	
	С	Propene, CH ₃ CHCH ₂	
	D	Propanone, CH ₃ COCH ₃	
	Sele	ect, from A–D , the compound which would	
	(a)	be a solid at room temperature	
	\times	Α	
	×	В	
	\times	C	
	\mathbf{X}	D	
		(1)	
	(b)	give a salt by reaction with sodium hydroxide	
	X	Α	
	\mathbf{X}	В	
	×	C	
	\mathbf{X}	D (1)	

Use this space for any rough working. Anything you write in this space will gain no credit.

			Leave blank
(c)	give a sulfonic acid by reaction with fuming sulfuric acid		
\mathbf{X}	Α		
X	В		
X	C		
\mathbf{X}	D	(1)	
(d)	form a precipitate when reacted with 2,4-dinitrophenylhydrazine		
\mathbf{X}	Α		
\times	В		
X	C		
×	D		0.10
		(1)	Q18
		(Total 4 marks)	

19. Select,	from A–D , the type of interaction which best describes the bonding between	Leave blank
(a) adj	acent polymer chains in $\{CH_2 - CH_2\}_n$	
A	dative covalent	
B	London forces	
C	ion-dipole	
D	ionic (1)	
(b) coj	oper ions and ammonia in $Cu(NH_3)_4^{2+}$	
A	dative covalent	
B	London forces	
C	ion-dipole	
D D	ionic	010
	(1)	Q19
	(Total 2 marks) TOTAL FOR SECTION A: 25 MARKS	
Use this :		
Use this :	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this :	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this a	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this :	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this a	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this :	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this a	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this :	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this a	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this :	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this a	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	
Use this :	TOTAL FOR SECTION A: 25 MARKS space for any rough working. Anything you write in this space will gain no	

SECTION B Answer ALL the questions. Write your answers in the spaces provided. 20. A firm claims that their iron tablets contain 10 mg of Fe^{2+} per tablet. A chemist wishes to check this by titration using potassium manganate(VII) and dilute sulfuric acid. $Fe^{2+}(aq) \Rightarrow Fe^{3+}(aq) + e^{-}$ MnO₄⁻⁻(aq) + 8H⁺(aq) + 5e⁻ \Rightarrow Mn²⁺(aq) + 4H₂O(1) (a) Why is the acid necessary? (1) (1) (b) How many moles of Fe^{2+} react with one mole of MnO_4^{--} ? (1)

Leave blank

) Each tablet contains 10 mg of Fe^{2+} .
(i) How many moles of Fe^{2+} are in one tablet?
(1)
 (ii) Use your answer to (i) to calculate the volume of 0.010 mol dm⁻³ potassium manganate(VII) solution that would be needed to react with one tablet.
(iii) Is this a suitable volume to verify the integrity of the firm's claim? How would you alter the experiment to obtain a more suitable volume?
(1)

I

		blank
*(d)	The recommended consumption of Fe^{2+} per day is 14 mg. The tolerable upper level of consumption of Fe^{2+} per day is 45 mg.	
	The "10 mg iron tablets" produced by a pharmaceutical company contain between 9 and 11 mg of Fe^{2+} .	
	Discuss whether or not this range of iron content is acceptable.	
	(2)	Q20
	(Total 8 marks)	

(11)	Draw out the mechanism for this reaction. Include an equation for the formation
	of the species that attacks the benzene ring.
(iii)	(4) Write an equation to show how the catalyst is regenerated.
(iii) Write an equation to show how the catalyst is regenerated.
(iii	
) Write an equation to show how the catalyst is regenerated.
) Write an equation to show how the catalyst is regenerated.
c) Co) Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds
c) Co) Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds
c) Co) Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds
c) Co) Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds
c) Co) Write an equation to show how the catalyst is regenerated. (1) mment critically on: the differences and similarities of the first steps involving the organic compounds

		Leave	
	*(ii) why the two intermediates formed in these first steps then react differently?		
	(3	 3)	
(d)) State the number of peaks in the proton nmr spectrum of the product of the reaction between cyclohexene and bromine.	on	
		 1) Q21	Ĺ
	(Total 17 marks	s)	

Fe [Ar] Fe ²⁺ [Ar] (ii) Draw the structure of the hexaaquairon(II) ion, [Fe(H ₂ O) ₆] ²⁺ , clearly showing its shape. (i) (iii) Give the equation for the complete reaction of hydroxide ions with a solution of hexaaquairon(II) ions. (i) (iv) State what you would see if the product mixture in (iii) is left to stand in air. (iv) State what you would see if the product mixture in (iii) is left to stand in air. (iv) State what you would see if the product mixture in (iii) is left to stand in air.	(a)	(i)	Give the electron	configuration of:	
 (1) (ii) Draw the structure of the hexaaquairon(II) ion, [Fe(H₂O)₆]²⁺, clearly showing its shape. (1) (iii) Give the equation for the complete reaction of hydroxide ions with a solution of hexaaquairon(II) ions. (1) (iv) State what you would see if the product mixture in (iii) is left to stand in air. 			Fe [Ar]		•••••
 (ii) Draw the structure of the hexaaquairon(II) ion, [Fe(H₂O)₆]²⁺, clearly showing its shape. (1) (iii) Give the equation for the complete reaction of hydroxide ions with a solution of hexaaquairon(II) ions. (1) (iv) State what you would see if the product mixture in (iii) is left to stand in air. 			Fe ²⁺ [Ar]		
shape. (1) (iii) Give the equation for the complete reaction of hydroxide ions with a solution of hexaaquairon(II) ions. (1) (iv) State what you would see if the product mixture in (iii) is left to stand in air					(1)
 (iii) Give the equation for the complete reaction of hydroxide ions with a solution of hexaaquairon(II) ions. (1) (iv) State what you would see if the product mixture in (iii) is left to stand in air. 		(ii)		re of the hexaaquairon(II) ion, $[Fe(H_2O)_6]^{2+}$, clearly showin	ng its
 (iii) Give the equation for the complete reaction of hydroxide ions with a solution of hexaaquairon(II) ions. (1) (iv) State what you would see if the product mixture in (iii) is left to stand in air. 					
 (iii) Give the equation for the complete reaction of hydroxide ions with a solution of hexaaquairon(II) ions. (1) (iv) State what you would see if the product mixture in (iii) is left to stand in air. 					
hexaaquairon(II) ions. (1) (iv) State what you would see if the product mixture in (iii) is left to stand in air.					(1)
(iv) State what you would see if the product mixture in (iii) is left to stand in air.		(iii)			on of
					(1)
		(iv)	State what you w	yould see if the product mixture in (iii) is left to stand in air	r.
(1)					•••••
					(1)

	$\mathrm{Fe}^{2+} + 2\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe} \qquad E^{\ominus} = -0.44 \mathrm{V}$
*(i) Def	ine the term standard electrode potential with reference to this electrode.
k(ii) Eve	blain why the value of E^{\ominus} suggests that the iron will react with an aqueou
	ation of an acid to give Fe^{2+} ions and hydrogen gas.
•••••	
(iii) Stat	te why E^{\ominus} values cannot predict that a reaction will occur, only that it
	sible.
	(
	(Total 10 marks

Leave

	•	nodern day fabric softeners are manufactured with the liquid enclosed in a water capsule. The capsule is based on a polymer of ethenol.	Leave blank
*(a)	Exp	blain why poly(ethenol) is soluble in water.	
		(2)	
(b)	Pol	y(ethenol) is made by hydrolysing poly(vinyl acetate), PVA, $[C_4H_6O_2]_n$.	
	(i)	Draw the repeat unit of poly(ethenol)	
		(1)	
	(ii)	Write the formula of the monomer which polymerises to form poly(vinyl acetate), PVA (poly(ethenylethanoate)).	
(c)	(i)	1,2-dibromocyclohexane reacts with ammonia to produce compound A , $C_6H_{14}N_2$. Give the structural formula of A .	

(1)

Q23
J

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

24. Read the passage below carefully and answer the questions which follow.

Stained glass and gemstones

Many medieval churches contain some very fine examples of stained glass coloured with transition metal compounds. Blue and green colours result from adding cobalt or copper oxides to molten glass. Copper oxide is added to colour the glass red, but it must be mixed with a strong reducing agent to give this colour. The red colour is so strong that it can appear black, and may need to be coated as a thin layer on top of colourless glass.

Like glass, many gemstones are based on silica and some on alumina. They are also coloured by transition metal compounds. A solid matrix of either silica, SiO_2 , or alumina, Al_2O_3 , has some of the silicon or aluminium replaced by a small quantity of a transition metal. Replacing about 5% of the aluminium ions in alumina with chromium(III) gives ruby, important in laser production. Replacement of aluminium ions by a mixture of iron(III) and titanium(III) gives sapphire. The metal coming in must have the same charge and about the same radius as the aluminium.

Based on 'Colour, A Chemical Overview' Chemistry Review volume 5, number 5, May 1996 written by Ken Kite

(\cdot)	Define what is meant by a transition element
(i)	Define what is meant by a transition element .
	(1)
	(1)
*(ii)	Explain the processes which lead to hydrated transition metal ions being coloured.
	(3)
) (i)	Give the formulae of the copper oxide which causes the red colour in glass.
) (i)	Give the formulae of the copper oxide which causes the red colour in glass. (1)
	(1) The production of red copper oxide is involved in a test for a functional group in organic chemistry. Name the reagent used in this test and the functional group it
	(1) The production of red copper oxide is involved in a test for a functional group in organic chemistry. Name the reagent used in this test and the functional group it detects.
	(1) The production of red copper oxide is involved in a test for a functional group in organic chemistry. Name the reagent used in this test and the functional group it detects. Reagent Functional group
	(1) The production of red copper oxide is involved in a test for a functional group in organic chemistry. Name the reagent used in this test and the functional group it detects. Reagent Functional group
	(1) The production of red copper oxide is involved in a test for a functional group in organic chemistry. Name the reagent used in this test and the functional group it detects. Reagent Functional group
	(1) The production of red copper oxide is involved in a test for a functional group in organic chemistry. Name the reagent used in this test and the functional group it detects. Reagent Functional group

	by would the addition of iron(II) oxide, FeO, or $osmium(III)$ oxide, Os_2O_3 , not lace aluminium ions in alumina?
	(2)
l) (i)	Starting with a chromium(III) compound, state how it could be converted into a chromium(VI) compound, a chromium(II) compound and a complex ion.
	You should include equations and colour changes in your answer.

	Leave blank
 (7)	

I

		Leave
*(ii)	Discuss the chemistry of the use of chromium salts in breathalysers. Explain	blank
	why they are no longer used and describe the chemistry of one modern type of	
	breathalyser.	
	(4)	Q24
	(Total 20 marks)	
	TOTAL MARKS FOR SECTION C: 20 MARKS TOTAL MARKS FOR PAPER: 90 MARKS	
	END	

BLANK PAGE

L

_

	0 (8)	(18) 4.0 hetium 2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	Ł	krypton 36	131.3	Xe	xenon 54	[222]	R	radon 86		p							
	7	(21)	19.0	Ŀ	fluorine 9	35.5	ธ	chlorine 17	79.9		bromine 35	126.9	_	iodine 53	[210]	At	astatine 85		Elements with atomic numbers 112-116 have been reported		175	Ξ	lutetium 71	[257]	٦	lawrencium 103
	9	(16)	16.0	0	oxygen 8	32.1	s	sulfur 16	79.0	Se	selenium 34	127.6	Ъ	tellurium 52	[209]	8	polonium 84		116 have b	nticated	173	ΥÞ	ytterbium 70	[254]	Ŷ	nobelium 102
	5	(15)	14.0	z	nitrogen 7	31.0	٩	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		mbers 112.	but not fully authenticated	169	Tm	thulium 69	[256]	ΡW	mendelevium 101
	4	(14)	12.0	U	carbon 6	28.1	Si	silicon 14	72.6	Ge	germanium 32	118.7	Sn	50 tin	207.2	Pb	lead 82	i	atomic nu	but not f	167	П	erbium 68	[253]	Ē	fermium 100
	ß	(13)	10.8	8	boron 5	27.0	AI	aluminium 13	69.7	Ga	gallium 31	114.8	드	indium 49	204.4	F	thallium 81		nents with		165	Ч	holmium 67	[254]	Es	californium einsteinium 98 99
ients								(12)	65.4	Zn	zinc 30	112.4	В	cadmium 48	200.6	Hg	mercury 80				163	2	dysprosium 66	[251]	ჭ	californium 98
Elem								(11)	63.5	5	copper 29	107.9	Ag	silver 47	197.0	ΡN	gold 79	[272]	Rg	roentgenium 111	159	đ	terbium 65	[245]	BK	berkelium 97
le of				(10) 58.7 Ni ckel							nickel 28	106.4	Р	palladium 46	195.1	Ł	platinum 78		õ	damstadtium 110	157	gadolinium 64		[247]		aurium 96
c Tab				(6)					58.9	ვ	cobalt 27	102.9	RЪ	45	192.2	Ŀ	iridium 77	[268]	Mt	meitnerium 109	152	Eu	europium 63	[243]	Am	americium 95
riodi		1.0 H hydrogen 1						(8)	55.8	Fe	iron 26	101.1		ruthenium 44	190.2	So	osmium 76	[277]	Hs	hassium 108	150	Sm	samarium 62	[242]	Pu	plutonium 94
The Periodic Table of Elements								(2)	54.9	Cr Wn	manganese 25	[98]		technetium 43	186.2	Re	rhenium 75		Bh	bohrium 107	[147]	Pm	59 60 61 61	[237]	d	neptunium plutonium americium 93 94 95
F			mass	pol	umber]		(9)	52.0	ა	chromium 24	95.9	Wo	molybdenum 38	183.8	₹	tungsten 74	[266]	Sg	seaborgium 106	144	PN	neodymium 60	238	5	uranium 92
		Key	relative atomic mass	atomic symbol	name atomic (proton) number			(2)	50.9	>	vanadium 23	92.9	ą	niobium 41	180.9	Ta	tantalum 73			dubnium 105	141	Pr	praseodymium 59	[231]	Pa	protactinium 91
			relati	ato	atomic			(4)	47.9	Ξ	titanium 22	91.2	Zr	zirconium 40	178.5	Hf	hafnium 72	[261]	Rf	rutherfordium 104	140	Сe С	cerium 58	232	Ę	thorium 90
								(2)	45.0	Sc	scandium 21	88.9	۲	yttrium 39	138.9	La*	lathanum 57	[227]	Ac*	actinium 89		S				
	2	(2)	0.6	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	Ca	calcium 20	87.6	Sr	strontium 38	137.3	Ba	barium 56	[226]	Ra	radium 88		* Lanthanide series	* Actinide series			
	-	(1)	6.9	ï	lithium 3	23.0	Na	sodium 11	39.1	¥	potassium 19	85.5	å	rubidium 37	132.9	പ	caesium 55	[223]	Ŀ	francium 87		* Lant	* Actin			