Tuesday 18 June 2013 – Morning # GCSE GATEWAY SCIENCE PHYSICS B **B752/02** Physics modules P4, P5, P6 (Higher Tier) Candidates answer on the Question Paper. A calculator may be used for this paper. OCR supplied materials: None ### Other materials required: - Pencil - Ruler (cm/mm) **Duration:** 1 hour 30 minutes | Candidate forename | | | | Candidate surname | | | | |--------------------|-----|--|--|-------------------|-------|--|--| | | | | | | | | | | Centre numb | per | | | Candidate nu | ımber | | | #### **INSTRUCTIONS TO CANDIDATES** - Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters. - Use black ink. HB pencil may be used for graphs and diagrams only. - Answer all the questions. - Read each question carefully. Make sure you know what you have to do before starting your answer. - Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s). - Do not write in the bar codes. ## **INFORMATION FOR CANDIDATES** - Your quality of written communication is assessed in questions marked with a pencil (). - A list of equations can be found on page 2. - The number of marks is given in brackets [] at the end of each question or part question. - The total number of marks for this paper is 85. - This document consists of 32 pages. Any blank pages are indicated. #### **EQUATIONS** | energy = ma | ass imes specific heat capacity : | × | |-------------|------------------------------------|---| | te | emperature change | | efficiency = $$\frac{\text{useful energy output (} \times 100\%)}{\text{total energy input}}$$ average speed = $$\frac{\text{distance}}{\text{time}}$$ $distance = average speed \times time$ $$s = \frac{(u+v)}{2} \times t$$ $$acceleration = \frac{change in speed}{time taken}$$ force = $mass \times acceleration$ weight = mass × gravitational field strength work done = force \times distance $$power = \frac{work \ done}{time}$$ $power = force \times speed$ $$KE = \frac{1}{2}mv^2$$ momentum = mass × velocity $$force = \frac{change in momentum}{time}$$ $$GPE = mgh$$ $$resistance = \frac{voltage}{current}$$ $$v = u + at$$ $$v^2 = u^2 + 2as$$ $$s = ut + \frac{1}{2}at^2$$ $$m_1u_1 + m_2u_2 = (m_1 + m_2)v$$ $$refractive index = \frac{speed of light in vacuum}{speed of light in medium}$$ $$magnification = \frac{image\ size}{object\ size}$$ $$I_e = I_b + I_c$$ voltage across primary coil voltage across secondary coil number of primary turns number of secondary turns power loss = $(current)^2 \times resistance$ $$V_pI_p = V_sI_s$$ # 3 # **BLANK PAGE** Question 1 begins on page 4 PLEASE DO NOT WRITE ON THIS PAGE # Answer **all** the questions. # **SECTION A – Module P4** - 1 Ultrasound is a longitudinal wave. - (a) Look at the diagram of an ultrasound wave in air. | | direction | of travel | > | |--|-----------|-----------|-------------| | | | | | | Use the diagram to describe the differences between a region of compression and a region rarefaction. | of | |---|--------| | | | | | | | |
21 | | [2 | رء | (b) Ultrasound can be used to scan the kidney and to break down kidney stones. | (i) | Explain how ultrasound breaks down kidney stones. | | |------|---|------------| | | | | | (ii) | Explain why ultrasound is used rather than X-rays to scan the kidney. | | | | | | | | | | | | | [Total: 4] | 2 (a) A radioactive tracer is put into an underground water pipe. A detector above the ground measures the radioactivity. The graph shows the amount of radioactivity detected along the length of the pipe. Describe the patterns in the graph and explain how this information can be useful. | | •• | |---|----| | r | 21 | (b) Radioactive substances decay naturally. Look at the information about two different radioactive substances. | Time in hours | Activity of substance X in counts per second | Activity of substance Y in counts per second | |---------------|--|--| | 0 | 8070 | 12810 | | 1 | 6801 | 6385 | | 2 | 5 697 | 3221 | | 3 | 4808 | 1 594 | | 4 | 4027 | 807 | | 5 | 3390 | 392 | | 6 | 2861 | 197 | | 7 | 2410 | 102 | | 8 | 2008 | 51 | | f substance X and the half-life o | | · | | stance Y. | | |--|------|------|------|-----------|--| | |
 |
 |
 |
 | | | [2 |
 |
 |
 |
 | | 3 Ronin and Kiri use an electric circuit to investigate the resistance of a thin wire. (a) Ronin changes the length of the wire. He calculates the resistance for each length.He plots a graph of his results. | (i) | Calculate the current for a 1.0 m length of wire, when the voltage across it is 0.75 V. | |-----|--| | | | | | | | | | | | current amps [3 | | | (ii) | The voltage across the thin wire is kept fixed at 0.75 V. | |-----|------|--| | | | Describe the relationship between the current in the thin wire and its length. | | | | [1] | | (b) | Kiri | repeats the investigation with a thinner wire. | | | She | keeps all the other factors the same. | | | | w a line on the graph to show how the resistance of the thinner wire changes as the gth increases. | | | | [Total: 5] | Question 4 begins on page 10 - 4 This question is about nuclear energy. - (a) Complete the crossword. | Α | CI | O | S | S | |---|----|---|---|---| | м | U | u | Э | 3 | 3 In stars, fusion happens at extremely high _ _ _ _ $\underline{\mathbf{e}}$ _ _ _ _ _ $\underline{\mathbf{s}}$. # Down 1 Nuclei of hydrogen isotopes undergo fusion to form _ _ _ _ nuclei. 2 Scientists stop nuclear fission reactions going out of control in a reactor by absorbing some of the <u>e</u>_____. **4** Scientists stop nuclear reactions going out of control by placing metal _ _ _ **s** in the reactor. | | 1 | | | | | | |---|---|---|--|--|---|---| | | | | | | | | | | | 2 | | | | | | 3 | | Е | | | 4 | S | S | [2] **(b)** Andrea Rossi **claims** to have invented an 'energy catalyser cold fusion system'. He demonstrated the system in January 2011 by passing hydrogen over a secret catalyst. It appeared to show that an input of a few hundred kilowatts produced an output of a few thousand kilowatts. Some scientists believe there is a nuclear reaction taking place because of the large amounts of extra energy produced. | Suggest why other scientists might not accept this claim. | | |--|----------| | | | | | | | | | | | | | | | | | [2] | | [то | otal: 4] | Question 5 begins on page 12 5 Tanida jumps up and down on a trampoline. The jumping surface of the trampoline is an insulating material. Tanida is wearing synthetic socks. | (a) | ground. | |-----|--| | | Use ideas about electron transfer to explain why this happens. | | | | | | | | | | | | [2] | | (b) | Anti-static sprays reduce the problem of static electricity on the trampoline. | | | Explain how. | | | | | | [2] | | | [2] | [Total: 4] # 13 BLANK PAGE **SECTION B begins on page 14** PLEASE DO NOT WRITE ON THIS PAGE # **SECTION B – Module P5** 6 Rockets use hot gases to make them move. Look at the diagram of a simple rocket. Denise lights the fuse of the rocket. The 50 g of fuel in the rocket ignites. A very fast chemical reaction takes place which creates a large amount of hot gas. The gas fills the hollow chamber. | (a) | The not gas produces a high pressure inside the rocket. | |-----|---| | | Explain how the particles in the hot gas produce a high pressure in the rocket, making it move | | | | | | | | | [2] | | (b) | Denise re-launches the same rocket. | | | This time, the rocket contains 100 g of the same type of fuel. | | | The rocket lifts off and reaches a greater height than before. | | | Suggest why using more fuel produces a greater force and acceleration on the rocket. | | | | | | [1] | | (c) | Rockets carry satellites into space. | | | These satellites can have different types of orbit around the Earth. | | | One type is a low polar orbit. | | | Another type is a geostationary orbit, which has an orbital period of 24 hours. | | | Describe and explain the differences in orbits, periods and speeds between geostationary orbits and low polar orbits. | | | The quality of written communication will be assessed in your answer to this question. | [6] | (d) A rocket was sent to Mars. The rocket carried a vehicle called the Mars Rover. The Mars Rover has a mass of 185 kg. Its wheels are designed to carry a total weight of up to 1800 N. The gravitational field strength (g) on Mars is 3.8 N/kg. This means a mass of 1 kg on Mars weighs 3.8 N. | | answer N [2 | |-----|--| | | | | (i) | Calculate the weight of the Rover vehicle on Mars. | (ii) Look at the table showing how gravitational field strength varies. | Place | Gravitational field strength in N/kg | |-------|--------------------------------------| | Moon | 1.6 | | Earth | 10.0 | | Mars | 3.8 | | Scientists are happy for the Rover to be used on the Moon or Mars. | |--| | They are very careful when using the Rover on Earth. | | Use the data and information about the Rover to explain why. | | | | | | | | [2] | [Total: 13] | 7 | (a) | Quantities in science can be vector or scalar . There are differences between vector and scalar quantities. | | | | | | | | |---|---|--|---------------|--------------|----------------|------------------|--------|-----|--| | | | | | | | | | | | | | | Look at the list. | | | | | | | | | | | mass | momer | tum s | peed | velocity | weight | | | | | Put each quantity in the correct column in the table. | | | | | | | | | | | | Vector | | | | Scalar | [2] | | | | | | | | | (b) | A skydiver drops | vertically fr | om a plane w | vith a startin | ng velocity of (|) m/s. | | | | | | Calculate his speed after 7 s. | | | | | | | | | | | Assume his acceleration during this time is 8.0 m/s ² . | | | | | | | | | | | Put a (ring) arour | nd the corre | ct answer. | | | | | | | | | 15 | m/s | 28 m/s | 30 m/s | 5 56 n | n/s | [1] | | | | (c) | He now opens his | s parachute | and deceler | ates steadil | y. | | | | | | | After 6s his speed is 4 m/s. | | | | | | | | | | | Calculate the distance he falls during these 6s. | © OCR 2013 Turn over answer m [2] [Total: 5] 8 Many years ago, scientists tried to find out about light. Some scientists, such as Newton, described light using a particle model. Other scientists, such as Huygens, described light using a wave model. Put ticks (✓) in the boxes to show which properties of light can be explained by each model. | Model | Property | | | | | |----------------|------------|--------------|--|--|--| | Model | Reflection | Interference | | | | | particle model | | | | | | | wave model | | | | | | [2] [Total: 2] **9** Helen does some research about the refractive index of different materials. | Material | Refractive index | |-----------------------------|------------------| | glass (acrylic) | 1.491 | | glass (arsenic trisulphide) | 2.040 | | glass (common) | 1.520 | | glass (71% lead) | 1.805 | | water | 1.333 | | air | 1.000 | The speed of light in a vacuum is 3.0×10^8 m/s. Light travels at different speeds through different materials. | (a) | Calculate the speed of light in water. | |-----|---| | | | | | | | | | | | answer m/s [2] | | (b) | Which material in the table will have the lowest critical angle when light passes from the material to air? | | | [1] | (c) Look at the diagram. It shows the dispersion of white light by a prism made from acrylic glass. | Use the diagram to explain why blue light has a higher refractive index than red lig
glass. | | |--|-----------| | | | | | | | | [2] | | | Total: 5] | # **SECTION C – Module P6** 10 (a) Trevor and Una connect different circuits. Look at the circuit Trevor connects. He gently heats the thermistor. | | [2 | |---|----| | | | | | | | | | | Describe and explain now heating the thermistor affects the brightness of the famp. | | | Describe and explain how heating the thermistor affects the brightness of the lamp. | | (b) Look at the circuit Una connects. | (1) | Calculate the total resistance for this arrangement of resistors. | |------|--| | | | | | | | | | | | | | | | | | answer Ω [2] | | (ii) | The battery voltage is 4V. | | | Calculate the current supplied by the battery. | | | | | | | | | | | | answer A [2] | (c) Look at the diagram of an NPN transistor. | | answer mA [| |---|----------------------| | | | | - | | | Calculate the current flowing from the emitte | er, I _e . | [Total: 7] 11 (a) Vic has a sealed box containing an electronic component. The box has lost its label. He connects a circuit containing the component in the box. He changes the voltage across the box and measures the current. Look at the graph of his measurements. | | [2] | |--|-----| | | | | Explain your answer, using ideas about resistance. | | | | | | Write down the name of the component in the box. | | (b) Look at the logic circuit. (i) Complete the truth table for the logic circuit. | Α | В | С | Output | |---|---|---|--------| | 0 | 0 | 0 | 0 | | 1 | 0 | 0 | 1 | | 0 | 1 | 0 | 1 | | 1 | 1 | 0 | 1 | | 0 | 0 | 1 | | | 1 | 0 | 1 | | | 0 | 1 | 1 | | | 1 | 1 | 1 | | [1] (ii) The circuit is used by a gardener in his greenhouse to control a fan. **A** is a temperature sensor hot = 1 **B** is a moisture sensor wet = 1 C is a light sensor light = 1 What conditions are necessary for the fan to operate? | (iii) | The fan operates from the mains. | |-------|---| | | A relay must be connected between the output of the logic gate and the fan circuit. | | | Explain why. | | | | | | | | | | | | [2] | | | [Total: 7] | Question 12 begins on page 26 12 Wendy's mobile phone charger contains a transformer. Look at the information about the transformer. | Input voltage | 230 V AC | |----------------|----------| | Input current | 50 mA | | Output voltage | 5V | Describe, in detail, the construction of the transformer and explain how applying a 230V input produces a 5V output. Include a diagram and a calculation in your answer. | The quality of written communication will be assessed in your answer to this question. | |--| | | | | |
 |
 | |------|------| |
 |
 | |
 |
 | |
 |
 | | | | |
 |
 | | | [6] | [Total: 6] 13 Computers will only work with a DC supply. A bridge rectifier changes AC to DC. Look at the diagram. | | When the AC input makes P negative and R positive, the current | |-----|--| | | | | | | | | When the AC input makes P positive and R negative, the current | | | | | (a) | Complete the following sentences to explain how this circuit changes AC to DC. | | | [Total: 3] | |-----|---| | | [1] | You may draw a diagram if you wish. | | | Describe what effect this has on the DC output. | | (b) | A large capacitor is connected in parallel with the resistor. | | | — - | 14 A microchip manufacturer has been asked to make electronic components for a new communications satellite. | [Total: | 2] | |---|-----| | [| 2] | | | | | | | | | ••• | | | | | | | | vinte about the announce for the managed or in maining very email compensation to the catemat | ٠. | | Write about the difficulties for the manufacturer in making very small components for the satellite | e. | | The manufacturer must make these components as small and as light as possible. | | # **SECTION D** **15** Car tyres grip the road when braking. Tyres have a tread that wears away slowly with use. New tyres have a tread that is 9 mm deep. The tread helps to move water away from the tyre when the road is wet. This increases friction forces and improves braking. (a) Look at the graph. It shows braking distances for tyres of different tread depths. The data is for two different road surfaces on a wet day. | | [1] | |-----|--| | | | | | Why is this more important for concrete surfaces rather than for tarmac surfaces? | | (i) | Road safety experts recommend changing tyres when the tread depth reduces to 3 mm. | | (ii) | The data in the graph was collected using sets of tyres with different tread depths. | |-------|--| | | The driver fits each set of tyres to the same car. | | | Suggest other things the driver needs to do to ensure the results can be compared in a fair way. | | | | | | | | | [2] | | (iii) | The braking distance increases as the tread depth decreases. | | | Manjit calculates the percentage increase in braking distance for the tarmac. | | | She finds that reducing the tread depth from 6.7 mm to 1.6 mm changes the braking distance from 24 m to 33 m. | | | This is a 38% increase in braking distance. | | | Steve thinks that on concrete, for the same reduction in tread depth, the percentage increase in braking distance will double. | | | Is Steve correct? | | | Use a calculation to explain your answer. | | | | | | | | | | | | | | | | | | [3] | **(b)** The minimum legal tread depth is 1.6 mm in the UK. Manjit has some tyres that have a tread depth of 6.7 mm. The garage tells her that, for normal driving, the tread should wear by 0.17 mm per 1000 km. | (i) | Calculate how many kilometres she can expect to travel before the tyres are illegal. | |------|---| | | | | | | | | answer km [3] | | (ii) | It is unwise for Manjit to use the tyres for the distance calculated before replacing them. | | | Use the graph to explain why. | | | | | | [1] | [Total: 10] ### **END OF QUESTION PAPER** #### Copyright Information OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE. OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.