GCE

Chemistry B (Salters)

Unit F331: Chemistry for Life
Advanced Subsidiary GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
$/$	alternative and acceptable answers for the same marking point
\checkmark	separates marking points
not	answers which are not worthy of credit and which will CON a correct answer
ignore	statements which are irrelevant and will NOT 'CON' a correct answer
allow	answers that can be accepted
()	words which are not essential to gain credit
$\overline{\text { ecf }}$	underlined words must be present in answer to score a mark
AW	error carried forward
ora	alternative wording (replaces the old 'or words to that effect')

Annotations used in scoris:

Annotation	Meaning
\checkmark	correct response
\mathbf{x}	incorrect response
bod	benefit of the doubt
nbod	benefit of the doubt not given
ECF	error carried forward
\wedge	information omitted
I	Ignore
R	Reject
BP	blank page

Subject-specific Marking Instructions that apply across the whole question paper to be included here.
Use a \checkmark for every correct answer where it is scored. Use BP for blank additional sheets. Don't forget to use the chain(link) symbol where answers are on additional sheets.

MARK SCHEME

Question 1			Answer				Mark	Guidance
1	a						1	All correct
			Isotope	Number of protons	Number of neutrons	Number of electrons		
			${ }^{28} \mathrm{Si}$	14	14	14		
			${ }^{29} \mathrm{Si}$	14	15	14		
			${ }^{30} \mathrm{Si}$	14	16	14		
			\checkmark					
	b	i	stage 2: ionisation stage 3: acceleration stage 4: drift(ing) (region) \checkmark				1	MUST be in correct order ALLOW 'flight' or 'flight zone' or 'flight path' for 'drift' IGNORE 'time of flight'
	b	ii	positive ions OR cations \checkmark accelerated to same Kinetic Energy \checkmark therefore if mass small then velocity/speed large ora OR' $K E=0.5 \mathrm{mv}^{2,} \downarrow$				3	'ions' can be implied QWC kinetic must be spelled correctly once IGNORE reference to size IGNORE wrong expressions for KE ALLOW in terms of take less/more time to reach detector for 3 rd mp .
	b	iii	$\begin{aligned} & (20.55 \times 70)+(27.37 \times 72)+(7.67 \times 73)+(36.74 \times 74)+(7.67 \times 76) \div \\ & 100 \checkmark \\ & 72.7 \checkmark \end{aligned}$				2	Correct answer on answer line scores both marks;
	b	iv	Evidence of use of graph $\checkmark$$1.6-2(.0)$				2	First mark for working shown on graph. Could be best fit curve/construction lines or marks on the x axis

Question 2			Answer	Mark	Guidance
2	a	i	$\begin{aligned} & (2 x-286)-(2 x-188) \checkmark \\ & -196 \checkmark \end{aligned}$	2	Answers of -196 score 2 without reference to working Answers of -98 (omitting 2s) score 1, no other ecf
	a	ii	$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ Correct balanced equation Second mark for correct state symbols on correct balanced equation \checkmark	2	ALLOW state symbols mark for: $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ But zero for any other equation
	a	iii	On right (product side) there are more moles/molecules/particles \checkmark gas on right/gases have more entropy/gas product $A W \checkmark$	2	IGNORE 'more products'
	b		moles $\mathrm{H}_{2} \mathrm{O}_{2}=90 / 34(=2.65) \checkmark$ $3 / 2 \times 2.65(=3.97)$ moles of product $70 \times$ calculated number of moles and evaluated \checkmark	3	ALLOW ecf including ecf from rounding Answers based on 2.779×10^{2} score 3 Answers based on 1.853×10^{2} score 2 Answers based on 5.565×10^{2} score 2 Answers based on 95.28 (use of 24 not 70) score 2 ALLOW 2 or more sf
	C	i	aliphatic: no benzene ring(s) OR aromatic: benzene $/ \mathrm{C}_{6} \mathrm{H}_{6}$ rings/arenes	1	Reference to no rings in aliphatic is a CON
	C	ii	$\mathrm{C}_{10} \mathrm{H}_{22}+151 / 2 \mathrm{O}_{2} \rightarrow 10 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}$	1	ALLOW multiples
	C	iii	contains a double/triple bond OR C=C OR C $=\mathrm{C} \checkmark$	1	ALLOW not all bonds are single
	C	iv	act as catalyst/speed up reaction/reduce activation energy OR large surface area for reaction \checkmark	1	IGNORE act as molecular sieves/separate straight chains from branched chains
	d		Produces no $\mathrm{CO}_{2} / \mathrm{CO} \checkmark$	1	ALLOW no carbon emissions/particulates/SO ${ }_{x}$ NOT less CO etc IGNORE $\mathrm{H}_{2} \mathrm{O}_{2}$ only produces water/reference to greenhouse gases/global warming
				14	

Question 3			Answer	Mark	Guidance
3	a	i		2	ALLOW alkoxyalkane for ether
	a	ii	$\begin{aligned} & \text { butan-2-ol } \checkmark \\ & \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} \checkmark \end{aligned}$	2	Atoms in any order DO NOT ALLOW $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ DO NOT ALLOW but-2-ol IGNORE dashes, brackets, commas
	a	iii	Bond/atoms coming out of/above the plane of the paper/towards you	1	IGNORE vague statements of 3D NOT molecule coming out of the page
	b		$\mathrm{NO} / \mathrm{NO}_{2} / \mathrm{N}_{2} \mathrm{O}_{4} \checkmark$ reaction/combustion/bonding/combining of nitrogen and oxygen in air/atmosphere \checkmark at high temperatures/hot conditions/intense heat (in engine) \checkmark	3	NOT NO ${ }_{x}$ ALLOW correct formulae for second mark $\left(\mathrm{N}_{2} / \mathrm{O}_{2}\right)$ ALLOW ONE of nitrogen and oxygen being stated as 'from the air' as long as there is not a CON e.g. 'nitrogen from the fuel'. ALLOW 'Oxidation of nitrogen in the air' NOT 'in exhaust' NOT just 'heat (in the engine)' IGNORE 'extreme'
	c		$2 \mathrm{~N}_{2} \mathrm{O} \rightarrow 2 \mathrm{~N}_{2}+\mathrm{O}_{2} \checkmark$	1	ALLOW halved/multiples IGNORE state symbols
	d	i	Reforming AND hydrogen \checkmark	1	ALLOW reformation/reform ALLOW H2 but IGNORE H

Question 3		Answer	Mark	Guidance
d	ii	carbons have four electron pairs/groups/sets OR carbons have four regions of electron density repel to get as far apart as possible/minimise electronic energy ${ }^{\checkmark}$ (predicted bond angles) of 109 (108-110) \checkmark CCC bond angle in cyclopropane less/smaller than 109 $\mathbf{O R}$ is $60 \checkmark$	4	$2^{\text {nd }}$ marking point must be in terms of electrons (ignore bonds) NOT 'as much as possible' unless qualified with minimise Any angle quoted which is not 60 is con 'Smaller/less' only scores if predicted angle has been stated as 108-110
d	iii	energy required to break one mole of bond \checkmark differs (for same bond) in different compounds/molecular environments/types of molecule/AW \checkmark	2	NOT 'different molecules'
			16	

Question 4			Answer	Mark	Guidance
4	a	i	in the same group/forms $2+$ ions/same charge \checkmark	1	ALLOW similar size ions ALLOW statement that they are (both) in group 2 IGNORE references to reactivity
	a	ii	$[\mathrm{Sr}]^{2+}\left[\begin{array}{lll} x & 0 & 8 \\ x & 0 & \\ & 0 \end{array}\right]^{2-}$	2	One mark for each completely correct ion ALLOW Sr surrounded by eight electrons ALLOW any distribution of $6+2$ electrons on oxygen as long as the 2 electrons match any shown on the Sr ALLOW signs before numbers Two correct ions with incorrect/no charges scores 1 Square brackets not essential if clearly ionic Circle not required around O
	a	iii	(a) energy absorbed/ heating causes electrons go into / promoted/up/excited to higher energy levels \checkmark (b) drop back emitting energy as light/photons/em (radiation) (c) energy levels/gaps are quantised/discrete (d) energy is proportional to frequency/E=hf/E=hv \checkmark (e) (spectra are unique) because (different) elements have different/ unique (gaps between) energy levels/AW \checkmark	5	NOT by photon/light/em radiation unqualified ALLOW 'shells' for energy levels NOT simply 'radiation' Marking point (c) can be scored from a labelled diagram showing y axis as E/energy/energy levels as label, or labelled Bohr diagram. "Shells" must be qualified by "energy levels" somewhere in the answer to score marking point (e)
	b	i	Any two from: Fixed amount/moles of carbonate \checkmark same temperature/heating conditions \checkmark Same volume/amount/concentration of lime water \checkmark	2	IGNORE mass of carbonate IGNORE moles of 'substance'
	b	ii	lime water goes cloudy/milky \checkmark observation seen sooner with calcium (carbonate) ora \checkmark	2	ALLOW quicker bubbling/more cloudy/more gas with calcium for second mark IGNORE any reference to colour of residue
	c		$\mathrm{SiO}_{3}{ }^{2-\checkmark \checkmark}$ One mark for any negative ion containing only Si and O ;	2	ALLOW SiO ${ }_{4}^{4-}$
				14	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

