

Level 2 Certificate FURTHER MATHEMATICS 8365/1

Paper 1 Non-Calculator

Mark scheme

June 2023

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
M dep	A method mark dependent on a previous method mark being awarded.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
ft	Follow through marks. Marks awarded following a mistake in an earlier step.
sc	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q	Answer	Mark	Comments
	2x + 1 = -5 or $2x = -6$ or $f^{-1}(x) = \frac{x-1}{2}$	M1	
1(a)	x = -3	A1	
	Additional Guidance		dance
	Correct answer not from incorrect working		M1 A1
	f(x) = 5 followed by $x = 2$		SC1

Answer	Mark	Com	ments	
Alternative method 1				
(g(3) =) 9	B1	may be implied by working	19 if no other	
or f [their g(3)] correctly evaluated	B1ft	any incorrect value correctly in f. Must gain this mark (can	be evidence of g to	
Alternative method 2		,		
(fg(x) =) $2x^2 + 1$ or $2 \times 3^2 + 1$	B1	may be implied by 19 if no other working		
19	B1ft			
Additional Guidance				
49 from gf(x) on answer line			SC1	
	B0 B1ft			
ff(x) doesn't get any marks		B0 B0		
Common errors from Alt 1 will come from getting g(x) incorrect and might include			B0 B1ft	
g(3) = 6 then $fg(3) = 13g(3) = 3$ then $fg(3) = 7$				
	Alternative method 1 $(g(3) =) 9$ 19 or f [their g(3)] correctly evaluated Alternative method 2 $(fg(x) =) 2x^2 + 1 \text{ or } 2 \times 3^2 + 1$ 19 Adding the second sec	Alternative method 1 $(g(3) =) 9$ $B1$ 19 or $f [their g(3)] correctly evaluated$ Alternative method 2 $(fg(x) =) 2x^2 + 1 \text{ or } 2 \times 3^2 + 1$ 19 $B1ft$ Additional Guide $49 \text{ from } gf(x) \text{ on answer line}$ Common errors from Alt 2 will come from getting fg(might include (but must include the function clearly strongly include) and the first strongly include of the function of the first strongly include of the function of the first strongly include of the first stron	Alternative method 1 $(g(3) =) 9$ $B1$ $may be implied by working$ 19 or $f [their g(3)] correctly evaluated$ $B1ft$ $any incorrect value correctly in f. Must gain this mark (can be correctly $	

Q	Answer	Mark	Com	ments
2	3xy(2x + 7)	B2	B1 for any factor to $3(2x^2y + 7xy)$ or $x(6xy + 21y)$ or $y(6x^2 + 21x)$ or $3x(2xy + 7y)$ or $3y(2x^2 + 7x)$ or $xy(6x + 21)$ B1 for correct higher with one term incorrect $3xy(a + 7)$ or $3xy(2x + b)$	est common factor
	Additional Guidance			
	Condone final bracket missing			
	Condone multiplication signs Condone changing order of terms eg 3(2x + 7)xy			
	(3xy + 0)(2x + 7)			
	or $(3xy +)(2x + 7)$			SC1
	or $3xy$ and $(2x + 7)$ seen but not together			

Q	Answer	Mark	Comments	
3(2)	$ \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} $	B1		
3(a)	Addi	tional Guid	dance	

Q	Answer	Mark	Comments	
	$\begin{pmatrix} 2 \times -3 + 4 \times 1 & 2 \times -4 + 4 \times 2 \\ -1 \times -3 + -3 \times 1 & -1 \times -4 + -3 \times 2 \end{pmatrix} \text{ or }$ or $\begin{pmatrix} -6 + 4 & -8 + 8 \\ 3 - 3 & 4 - 6 \end{pmatrix} \text{ or } \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$	M1	allow M1 for any three correct calculations or any three correct terms in the matrix calculations don't need to be in a matrix condone missing brackets	
3(b)	$-2\begin{pmatrix}1&0\\0&1\end{pmatrix}(=-2\mathbf{I})$	A1	may be written as $k \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ where $k = -2$	
	Additional Guidance			
	Errors in identity matrix will be penalised	$eg 2 \begin{pmatrix} -1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$ or $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$ are	
	insufficient for A1			
	Must be evidence of identity matrix for A mark $ \operatorname{eg} \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} \text{ and } k = -2 $		M1 A0	

Q	Answer	Mark	Com	ments
	$\frac{24}{7-5}$ or $\frac{6}{2}$ or $\frac{-4-2}{5-7}$ or $\frac{-6}{-2}$	M1	oe these calculations is diagram but there revidence of subtractaking place to gain	needs to be ction and division
	3 A1 3 only (no x)		3 only (no x)	
4(a)	Addi	tional Guid	dance	
	Could use $y = mx + c$ then simultaneous completed correctly then full marks	M1 A1		
	If the simultaneous equations method is used incorrectly or only partially			мо ао
	Correct answer from graphical method or	M1 A1		
	(y=) 3x or 3x - k on answer line			M1 A0

Q	Answer	Mark	Com	ments
	$(7-5)^2 + (2-4)^2$ or $2^2 + 6^2$ or $4+36$	M1	may be seen on a diagram ft differences from Q4(a) for this mark only (must be numbers used in Q4a and not equivalents – see Additional Guidance)	
	$\sqrt{40}$ or $\sqrt{4} \times \sqrt{10}$	M1dep		
4(b)	A1 0		just $a=2$ and $b=10$ would not be enough for A1 (unless $2\sqrt{10}$ in working)	
	Addi	tional Guid	dance	
	Penalise incorrect further working			
	Example of ft from Q4(a) would be $m = \frac{6}{12}$ so [(ST) ² =] 6 ² + 12 ²		M1 M0 A0	
	But $m = \frac{6}{12}$ then cancelled and so [(ST) ² =] 1 ² + 2 ²			мо мо ао

Q	Answer	Mark	Com	ments	
	(n+1)() or $n^2+n-n-1$ or n^2-1 or $n^2+2n+n+2$ or n^2+3n+2	f (n + 1) taken out ract			
	(n+1)(n+2-(n-1)) or $n^2+2n+n+2-(n^2-n+n-1)$	M1dep	oe eg could be subtrac	cted vertically	
_	(n+1)(n+2-n+1) = 3(n+1) or $3n+3or n^2+3n+2-n^2+1=3n+3 or 3(n+1)$	A1	no statement needed at end of proof		
5	Addi				
	$X_{n} - Y_{n}$ can be awarded method marks by	ut A0 unles	s rescued at the end	M2 A0	
	eg recovery $-3(n+1)$ so $Y_n - X_n$ is a mul	tiple of 3		M2 A1	
	Missing brackets can be recovered later recovered then second M should not be a show recovery	M2 A1			
	eg $n^2 + 3n + 3 - n^2 - 1$ (error in X_n but Y_n	M1 M0 A0			
	Condone use of x (or other letter) instead only gain M1. However $Y_n - X_n = 3(n+1)$ show a multiple of 3				

Q	Answer	Mark	Con	nments	
	$6x^5 + 8x$	M1	either term correct	t	
	$6 \times 1^5 + 8 \times 1$ or 14	M1dep	all needs to be co	rrect (no ft)	
	$-2 = (\text{their 14}) \times 1 + c$ from $y = (\text{their 14})$ or $y - 2 = (\text{their 14}) (x - 1)$ M1 must be evidence get this mark	x + c of differentiation to			
6	y = 14x - 16	A1			
	Additional Guidance				
	Negative reciprocal of 14 to find the normal rather than the tangent ie. $-2 = \frac{-1}{14} \times 1 + c$ or $y - 2 = \frac{-1}{14} (x - 1)$			M3 A0	
	14 from incorrect differentiation				
	eg $6x^4 + 8$ in differentiation with correct answer then ft correct eg $6x^4 + 8x$ in differentiation with correct answer then ft correct			M0 M0 M1 A0 M1 M0 M1 A0	

Q	Answer	Mark	Comments		
	(Cone =) $\frac{1}{3}\pi r^2 x$ or (Prism =) $\frac{1}{2}y^2 x$	M1	could appear in M1 dep working height must be x		
	$\frac{1}{3}\pi r^2 x = 2y^2 x$	M1dep	for correctly processing the 4 must be a correct equation $oe \ eg \qquad \frac{\frac{1}{3} \times \pi r^2 \times x}{2} = \frac{2y^2 \times x}{2}$ or $\frac{\pi r^2 \times x}{6} = \frac{2y^2 \times x}{2}$ $\frac{1}{3} \pi r^2 x = 4 \ (\frac{1}{2} y^2 x) \ is \ not \ enough \ for$ M1 here because the 4 has not been processed		
7	$\frac{1}{3}\pi r^2 = 2y^2$ or $r^2 = \frac{6y^2}{\pi}$ or $\frac{1}{3}r^2 = \frac{2y^2}{\pi}$ or $\pi r^2 = 6y^2$	M1	oe for eliminating x dependent on both formulae being correct may have been numerical errors in previous M mark allow multiplication signs unprocessed numerical values can be condoned		
	$r = \sqrt{\frac{6}{\pi}} y$ or $r = \sqrt{\frac{6y^2}{\pi}}$	A1	numbers need to be simplified $\sqrt{\frac{12y^2}{2\pi}} \text{or} \sqrt{\frac{2y^2}{\frac{1}{3}\pi}} \text{are A0}$ ensure that root is over the whole fraction (or separate roots over the numerator and denominator)		
	Additional (Guidance o	on next page		

Additional Guidance	
$r = \sqrt{\frac{6y^2x}{\pi x}}$	M1 M1 M0 A0
$\frac{4}{3}\pi r^2 x = \frac{1}{2}y^2 x \text{(multiplying the wrong side by 4) followed by}$ $\text{eg } \frac{4}{3}\pi r^2 = \frac{1}{2}y^2 \text{or} 8r^2 = \frac{3y^2}{\pi} \text{or} \frac{4}{3}r^2 = \frac{y^2}{2\pi} \text{or} \pi r^2 = \frac{3}{8}y^2$	M1 M0 M1 A0
Penalise ± on answer line	M3 A0
Either formula incorrect would result in maximum mark of M1	M1 M0 M0 A0
Possible restarts could use both correct formulae	

Q	Answer	Mark	Comments	
	Alternative method 1			
	$x^2 + y^2 = 25$	B1	oe equation of circle $eg x^2 + y^2 = 5^2$ $eg (x - 0)^2 + (y - 0)^2 = 25$	
	$(2y-5)^2+y^2$	M1	must be $2y - 5$ substituted into $x^2 + y^2$	
	$(4y^2 - 20y + 25) + y^2$	M1	oe ft their 2y – 5 correctly expanded	
	$5y^2 - 20y = 0$ or $y^2 - 4y = 0$ or $5y(y - 4) = 0$ or $y(y - 4) = 0$	M1dep	oe (dependent on B1 M2) must be fully correct (no ft)	
	y = 0 and $y = 4or (-5, 0) or (3, 4)$	A1		
	(-5, 0) and (3, 4)	A1		
	Alternative method 2			
8	$x^2 + y^2 = 25$	B1	oe equation of circle eg $x^2 + y^2 = 5^2$ eg $(x - 0)^2 + (y - 0)^2 = 25$	
	$x^2 + \left(\frac{x+5}{2}\right)^2$	M1	must be $\left(\frac{x+5}{2}\right)$ substituted into $x^2 + y^2$	
	$x^{2} + \left(\frac{x^{2} + 10x + 25}{4}\right)$ or $4x^{2} + x^{2} + 10x + 25 (= 100)$	M1	oe $ ft their \left(\frac{x+5}{2} \right) $	
	$5x^2 + 10x - 75 = 0$ or $x^2 + 2x - 15 = 0$ or $(x-3)(x+5) = 0$	M1dep	oe (dependent on B1 M2) must be fully correct (no ft)	
	x = 3 and $x = -5or (-5, 0) or (3, 4)$	A1		
	(-5 , 0) and (3 , 4)	A1		
	Additional Guidance on next page			

	Additional Guidance					
	Answer could be written as $x = -5$, $y = 0$ and $x = 3$, $y = 4$	B1 M3 A2				
	Answer with no working (for M3) or from trying to draw an accurate graph or T&I	B0 M0 A0				
	Incorrect circle equation can still score 2 marks	B0 M2 M0 A0 A0				
	eg. $x^2 + y^2 = 10$	В0				
	$x^2 + \left(\frac{x+5}{2}\right)^2$	M1				
8 (cont'd)	$4x^2 + x^2 + 10x + 25 = 40$	M1				
(cont u)	$5x^2 + 10x - 15 = 0$	MO				
	(x+3)(x-1)=0					
	x = -3 and $x = 1$	A0				
	y = 1 and $y = 3$	A0				
	Correct answer can be gained by using the incorrect substitution $\label{eq:x} x = 5 - 2y$	B1 M0 M1 M0 A0				
	Candidates that rearrange $x^2 + y^2 = 25$ correctly and substitute into $2y = x + 5$ will gain first M mark. They should then follow main scheme for other marks	B1 M1				

Q	Answer	Mark	Comments		
	$w(y^2 - 2) = y^2 + 5$	M1			
	$wy^2 - 2w = y^2 + 5$	M1dep			
	$y^2 (w-1) = 2w + 5$		rearranges and factorises		
	or $y^2 = \frac{(2w+5)}{(w-1)}$				
	or y^2 (-w + 1) = -2w - 5	M1dep			
	or $y^2 = \frac{(-2w-5)}{(-w+1)}$				
9	$y = (\pm) \sqrt{\frac{(2w+5)}{(w-1)}}$ or $y = (\pm) \sqrt{\frac{(-2w-5)}{(-w+1)}}$	A1			
	or $y = (\pm) \sqrt{\frac{(-2w-5)}{(-w+1)}}$	711			
	Additional Guidance				
	Root must cover the whole function for fir	nal mark (o	r separate roots		
	over both numerator and denominator)				
	Must be y =				
	If correct answer in working then $y = lost$ on the answer line then				
	transcription error so A1 can be awarded				
	Penalise incorrect further working				

Q	Answer	Mark	Comments
	$\frac{\left(1+\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}$	M1	oe $\frac{\left(1+\sqrt{5}\right)\left(-3-\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(-3-\sqrt{5}\right)}$ (if this method is used then follow equivalent MS for -4 and $-3-5-\sqrt{5}-3\sqrt{5}$) could be seen separately or in a grid
	Denominator = 4 or 9 – 5	M1dep	
10	Numerator $3+5+\sqrt{5}+3\sqrt{5}$	M1dep	oe any 3 terms out of 4 correct (terms may have already been simplified eg $3+4\sqrt{5}$ just one error so M1dep) do not accept $\sqrt{5}$ $\sqrt{5}$ or $\sqrt{25}$ for 5 this would be one error could be implied from $\frac{8+4\sqrt{5}}{4}$ only dependent on first M mark
	2+√5	A1	condone $2+1\sqrt{5}$ don't condone $\frac{2+\sqrt{5}}{1}$
	Additional Guidance		
	Untidy mathematical notation can be cond	doned as lo	ong as it's recovered

Q	Answer	Mark	Com	ments
	$\left(\frac{dy}{dx} = \right)\frac{x^3}{3} + 6x$	M1	oe eg $\frac{4}{12} x^3$ either term correct ignore LHS	
11	$\left(\frac{d^2y}{dx^2} = \right)x^2 + 6$ or $x^2 + 6 = 55$	M1dep	oe eg $x^2 = 49$ must come from ful	ly correct first M
	7	A1	do not accept -7 or	±7
	Addi	tional Guid	dance	
	M1 dep (and hence A1) can only be gain correct (no incorrect terms and no addition		st M mark is fully	
	eg an answer of $\frac{1}{3}x^3 + 6x + 4$ would be allowed for M1 but as it's not fully correct would lose the following 2 marks			

Q	Answer	Mark	Comments	
	(x =) 270°	B1		
	Additional Guidance			
12(a)	Do not accept answers outside of the given	en range o	r a choice of	
	Condone ° missing			

Q	Answer	Mark	Com	nments
12(b)	$\tan y = \frac{1}{\sqrt{3}}$ or $\tan y = \frac{\sqrt{3}}{3}$ or $y = \tan^{-1} \frac{\sqrt{3}}{3}$ or $y = \tan^{-1} \frac{1}{\sqrt{3}}$	M1		
	(y =) 30° or 210°	M1dep	values or 30° may be seen a calculation or on a embedded in tan 3	diagram or 0° in a table with other c values (and not
	(y =) 30° and 210°	A1		
	Addi	tional Guid	dance	
	Correct answer could come from incorrect working			M0 A0
	30° with no working			M2
	30° and 210° with no working			M2 A1

Q	Answer	Mark	Comments	
	Common denominator found and used for all terms at some point during the method and at least one new numerator correct for that denominator	M1	eg $\frac{6x-9}{3x} - \frac{1}{3x} + \frac{3x}{3x}$ or $\frac{3x(2x-3)}{3x^2} - \frac{x}{3x^2} + \frac{3x^2}{3x^2}$ or $\frac{6x-10}{3x} + \frac{3x}{3x}$	
13	Numerator of $6x-9-1+3x$ for denominator of $3x$ or numerator of $6x^2-9x-x+3x^2$ for denominator of $3x^2$		oe – will depend on the denominator but all numerator terms must be correct for the denominator used. could be a single fraction or separate fractions with the same denominator	
	$\frac{9x-10}{3x}$	A1	$3 - \frac{10}{3x}$ is not a single fraction so is A0	
	Additional Guidance			
	Penalise incorrect further working	M2 A0		

Q	Answer	Mark	Com	ments
	$3x^2 - 10x + 8$ or $-3x^2 + 10x - 8$	M1		
	Factorising $(3x - 4)(x - 2)$ or completing the square $\left(x - \frac{5}{3}\right)^2 - \frac{1}{9}$ or $3\left(x - \frac{5}{3}\right)^2 - \frac{1}{3}$ or formula $\frac{10 \pm \sqrt{4}}{6}$	M1dep	(3x – 4)(3x – 6) is a M1dep here	acceptable for
	$\frac{4}{3}$ and 2	M1 dep	oe – such as $1.\dot{3}$ or $1\frac{1}{3}$ or $\frac{4}{3}$ or $\frac{8}{6}$ can be seen in any format or inequalit (correct or incorrect) eg $\frac{4}{3} > x$	
14	$\frac{4}{3} \leqslant x \leqslant 2$	A1	oe – could be writted inequalities but do stage as an oe $\frac{4}{3} \leqslant x \text{ and } x \leqslant 2$ must see the word incorrect inequality	not accept $\frac{8}{6}$ at this 'and' in this format
	Additional Guidance			
	Candidates may presume that there may be a negative solution and reverse the inequality			M3 A0
	They may however work this through and then realise it is giving the incorrect values when they test it. They can then correct themselves to still gain full marks			M3 A1
	Students attempting T&I to get the solutions would need to get both solutions to get M3. If they then put that into the correct inequality it will be M3 A1			M3 A0 or M3 A1

Q	Answer	Mark	Com	ments	
	$x - x^2 - x^2 + x^3$ (= $x^2 + x$)	M1	missing terms (could if they go straight to M1		
			if they go straight to where k is not 2 the more than one erro	en this could be	
	$x^3 - 3x^2 = 0$ or $x^3 = 3x^2$	M1dep	no ft		
	$x^2(x-3)(=0)$	M1	factorising their equation fully and correctly (must have x^3 plus/minus other term(s) in x^n where $n\neq 0$).		
	(x =) 0 and (x =) 3	A1	condone $x = 0$ $x =$	= 0 x = 0 x = 3	
	Additional Guidance				
	First M mark could be done in root form but would still need to end up with $x - x^2 - x^2 + x^3$ (= $x^2 + x$) for M1				
15	Candidates may divide by x at some point during the method. If they do this and state that $x = 0$ is a solution at this point, the method can be continued to a correct outcome for full marks or $x^2 - 3x = 0$ or $x^2 = 3x$ would be M1dep and $x(x - 3)(= 0)$ would be the third M mark				
	$eg x - x^2 - x^2 + x^3 = x^2 + x$				
	$1 - x - x + x^2 = x + 1$ with $x = 0$			M1 M1dep	
	$x^2 - 3x = 0$				
	If they do not state $x=0$ is a solution and continue to a correct solution then award full marks but if it's not stated and they don't get to the correct solution then no further marks available as soon as the division is done				
	$eg x - x^2 - x^2 + x^3 = x^2 + x$				
	$1 - x - x + x^2 = x + 1$ (no mention of $x = 0$ being a possible solution)			M4 MOdon	
	$x^2 - 3x = 0$			M1 M0dep	
	If no other marks awarded then $x=0$ or $x=3$ seen on answer line (or the last thing they have written)			SC1	
	x = 0 and $x = 3$ not from incorrect working	9		M3 A1	

Q	Answer	Mark	Com	ments
	(1 4) 6 (4 1) or (1) 3 (3 1) seen and used correctly (in correct place in expansion) as part of Pascal's triangle or $\binom{4}{2}$ or 4C_2 or $\binom{3}{1}$ or 3C_1 or $\binom{3}{2}$ or 3C_2 seen and used	B1	$6(1^2)12x^2$ would be B1 $6(1^2)12^2x^2$ would be B1 leading onto M1dep $6(1^2) + 12x^2$ would be B0 or equivalent in other expansion	
	$6 \times 12 \times 12 (\times x^2) \text{ or } 864(\times x^2)$	M1dep	oe could be within an expansion dependent on B mark only	
16	$3 \times a \times 4 \times 4(\times x^2)$ or $48a(\times x^2)$	M1dep	oe could be within an expansion dependent on B mark only	
	18	A1		
	Addi	tional Guid	dance	
	(1) 3 (3 1) used in (1 + 12x) ⁴ would gain no marks			B0
	Either M mark implies the B mark			
	Candidates attempting to expand the brac mark to get the B mark. They could have r as long as they get $864x^2$ or $48ax^2$			

Q	Answer	Mark	Com	nments
	$\left(\frac{dy}{dx} = \right) 3ax^2 + 2bx$	M1	either term correct ignore LHS	
	$3a(-2)^{2} + 2b(-2) = 0$ or $12a - 4b = 0$ or $3a - b = 0$		when $\frac{dy}{dx} = 0$	
	or $3a(-2)^2 + 2(1+2a)(-2) = 0$ (this would come from doing the third M mark before the differentiation)	M1dep	can follow through from an error in first M mark (as long as there are at least two terms in x^n)	
17	$11 = a(-2)^{3} + b(-2)^{2} + 7$ or $-8a + 4b = 4$ or $-2a + b = 1$ or $11 = a(-2)^{3} + 3a(4) + 7$	M1	oe	
	a = 1 or b = 3	A1	dependent on M3 awarded	
	a = 1 and $b = 3$	A1		
	Additional Guidance			
	Correct answer could come from incorrect working (follow usual guidance)			
	a = 1 and $b = 3$ not from incorrect working will be full marks			M3 A2
	Only one correct answer without working is	s 0 marks		M0 A0

Q	Answer	Mark	Comr	nents
	Alternative Method 1 – Elimination of x from the first 2 equations			
	Correctly setting up two equations to eliminate x with an attempt to add or subtract from first two equations	M1	eg $2(x + 3z) - (2x + y)$	
	Correct method and terms to eliminate a second variable	M1dep	eg (6z - y) - 6(z - 2y)	
	Correctly eliminating a variable from their two correct equations to form an equation in one variable	M1dep	eg y $-12y = 9 - 42$ or $11y = 33$ or $y = 3$	
	Two correct values with working seen	A1	eg $y = 3$ and $x = 5$	5
	x = 5 and $y = 3$ and $z = -1$ with correct working seen	A1	oe	
	Addit	Additional Guidance		
	For first two M marks LHS manipulation of	d	M2	
	All three M marks can be combined in one equation:			
	ie $2(x + 3z) - (2x + y) - 6(z - 2y) = 11y$			M3
18	and $11y = 33$ and $y = 3$			
	May be multiple attempts. M marks can be awarded for best attempt but A marks would have to be from answers chosen			
	Stop marking after first error on LHS (but check for restarts)			
	Stop marking as soon as T&I/inspection restarts)	gin (but check for		
	Alternative Method 2 – Elimination of	y from 2 eq	uations	
	Correctly setting up two equations to eliminate y with an attempt to add or subtract from two equations	M1	eg $2(2x + y) + (z - 2y)$	
	Correct method and terms to eliminate a second variable	M1dep	eg (4x + z) - 4(x + 3z)	
	Correctly eliminating a variable from their two correct equations to form an equation in one variable	M1dep	eg z $-12z = -7+18$ or $-11z = 11$ or $z = -1$	
	Two correct values with working seen	A1	eg $z = -1$ and $x = 5$	
	x = 5 and $y = 3$ and $z = -1$ with correct working seen	A1	ое	

Additional Guidance	
For first two M marks LHS manipulation only required	M2
All three M marks can be combined in one equation:	
ie $2(x + 3z) - (2x + y) - 6(z - 2y) = 11y$	M3
and $11y = 33$ and $y = 3$	
May be multiple attempts. M marks can be awarded for best attempt but A marks would have to be from answers chosen	
Stop marking after first error on LHS (but check for restarts)	
Stop marking as soon as T&I/inspection methods begin (but check for restarts)	

Answer	Mark	Comm	ents	
Alternative Method 3 – Elimination of z from 2 equations				
Correctly setting up two equations to eliminate z with an attempt to add or subtract from two equations	M1	eg $(x + 3z) - 3(z - 2y)$		
Correct method and terms to eliminate a second variable	M1dep	eg 2(x + 6y) - (2x + y)		
Correctly eliminating a variable from their two correct equations to form an equation in one variable	M1dep	eg y $-12y = 9 - 42$ or $11y = 33$ or $y = 3$		
Two correct values with working seen	A1	eg $y = 3$ and $x = 5$		
x = 5 and $y = 3$ and $z = -1$ with correct working seen	A1	oe		
Additional Guidance				
For first two M marks LHS manipulation only required			M2	
All three M marks can be combined in one equation:				
ie $2(x + 3z) - (2x + y) - 6(z - 2y) = 11y$			М3	
and $11y = 33$ and $y = 3$				
May be multiple attempts. M marks can be awarded for best attempt but A marks would have to be from answers chosen				
Stop marking after first error on LHS (but check for restarts)				
Stop marking as soon as T&I/inspection methods begin (but check for restarts)				
	Correctly setting up two equations to eliminate z with an attempt to add or subtract from two equations Correct method and terms to eliminate a second variable Correctly eliminating a variable from their two correct equations to form an equation in one variable Two correct values with working seen $x = 5$ and $y = 3$ and $z = -1$ with correct working seen Additional or first two M marks LHS manipulation of the equation in one variable and the equation in one variable. For first two M marks LHS manipulation of the equation in one variable and the equation in one variable. Additional or first two M marks can be combined in one in equation in the equation i	Correctly setting up two equations to eliminate z with an attempt to add or subtract from two equations Correct method and terms to eliminate a second variable Correctly eliminating a variable from their two correct equations to form an equation in one variable Two correct values with working seen A1 $x = 5$ and $y = 3$ and $z = -1$ with correct working seen Additional Guid For first two M marks LHS manipulation only require All three M marks can be combined in one equation: ie $2(x + 3z) - (2x + y) - 6(z - 2y) = 11y$ and $11y = 33$ and $y = 3$ May be multiple attempts. M marks can be awarded A marks would have to be from answers chosen Stop marking after first error on LHS (but check for response).	Alternative Method 3 – Elimination of z from 2 equations Correctly setting up two equations to eliminate z with an attempt to add or subtract from two equations Correct method and terms to eliminate a second variable Correctly eliminating a variable from their two correct equations to form an equation in one variable Two correct values with working seen Alternative Method 3 – Elimination of z from 2 equations M1 dep eg $(x + 3z) - 3(z - 2z)$ eg $(x + 3z) - 3(z - 2z)$ The equation in two equations to eliminate a second variable For their two correct equations to form an equation in one variable Alternative Method 3 – Elimination of z from 2 equations M1 dep eg $(x + 3z) - (2x + y) - (2x + z)$ or $(x + 3z) - (2x + y) - (2x + z)$ Alternative Method 3 – Elimination of z from 2 equations H1 dep eg $(x + 3z) - (2x + y) - 4z$ or $(x + 3z) - (2x + y) - 4z$ or $(x + 3z) - (2x + y) - 4z$ and $(x + 3z) - (2x + y) - 4z$ Alternative Method 3 – Elimination of z from 2 equations Alternative Method 3 – 2 equations eq $(x + 3z) - (2x + y) - (2x + y)$ or $(x + 3z) - (2x + y) - (2x + y)$ or $(x + 3z) - (2x + y) - (2x + y)$ eg $(x + 3z) - (2x + y) - (2x + y)$ Alternative Method and terms to add or minimate and equations eq $(x + 3z) - (2x + y) - (2x + y)$ or $(x + 3z) - (2x + y) - (2x + y)$ eq $(x + 3z) - (2x + y) - (2x + y)$ or $(x + 3z) - (2x + y) - (2x + y)$ eq $(x + 3z) - (2x + y) - (2x + y)$ eq $(x + 3z) - (2x + y) - (2x + y)$ or $(x + 3z) - (2x + y) - (2x + y)$ eq $(x + 3z) - (2x + y) - (2x + y)$ eq $(x + 3z) - (2x + y) - (2x + y)$ eq $(x + 3z) - (2x + y) - (2x + y)$ eq $(x + 3z) - (2x + y) - (2x + y)$ eq $(x + 3z) - (2x + y) - (2x + y)$ eq $(x + 3z) - (2x + y) - (2x + y)$ eq $(x + 3z) - (2x + y) - (2x + y)$ eq $(x + 3z) - (2x + y) - (2x + y)$ eq $(x + 3z) - (2x + y) - (2x + y)$ eq $(x + 3z) - (2x + y) - (2$	

	Alternative Method 4 - Substitution		
	One equation rearranged and correctly substituted into a second equation to eliminate an unknown	M1	eg $x = 2 - 3z$ and $2(2 - 3z) + y$
	Two correct equations formed with the same two unknowns in each equation (must be simplified correctly) and one equation rearranged so it can be substituted into the second equation	M1dep	eg $-6z + y = 9$ and $z = 2y - 7$
	Correctly eliminating a variable from their two correct equations to form an equation in one variable	M1dep	eg $-6(2y-7) + y = 9$ or $-11y = -33$ or $y = 3$
	Two correct values with working seen	A1	eg $z = -1$ and $y = 3$
	x=5 and $y=3$ and $z=-1$ with correct working seen	A1	oe
	Additional Guidance Could use a combination of elimination and substitution at any point. Stop marking after first error May be multiple attempts. M marks can be awarded for best attempt but A marks would have to be from answers chosen		
	Stop marking as soon as T&I/inspection restarts)	methods be	gin (but check for

Q	Answer	Mark	Com	nments
19	(c =) 8, (d =) $\frac{5}{4}$ or 1.25 and (n =) $\frac{31}{2}$ or $15\frac{1}{2}$ or 15.5	В3	oe B2 any 2 correct of embedded) B1 $(d =) \frac{5}{4}$ or 1.2 or $(n =) \frac{31}{2}$ or 18 on answer line or $cx^2 + 2cdx + c$ or $8\left(x + \frac{5}{4}\right)^2$ of in method	$5\frac{1}{2}$ or 15.5 cd^2 (+3)
	Additional Guidance			
	(c =) 8 on its own is 0 marks			M0 A0

Q	Answer	Mark	Comments	
	Angle PQR = 60°	B1	no reason required (angle at circumference is half angle at centre) could be on diagram	
	$(PR^2 =) 4^2 + 5^2 - 2(4)(5) \cos (their 60^\circ)$	M1	cosine rule applied to work out PR	
	$\cos 60^{\circ} = 0.5 \text{ or } \frac{1}{2} \text{ or } \frac{\sqrt{1}}{2}$	B1	must be used as part of an attempted cosine rule that requires 60°	
	$PR^2 = 21 \text{ or } PR = \sqrt{21}$	M1dep	would imply the B marks	
20	$(PO =) \left(\frac{\frac{1}{2}(\text{their PR})}{\sin 60^{\circ}}\right)$	M1	PR must have a value $oe \ eg \ PO = \frac{\sqrt{21}}{2} \div \frac{\sqrt{3}}{2}$ could use cosine rule again or sine rule at this stage but it would need to lead directly in one calculation to $\sqrt{7}$ $eg \left(\frac{their\sqrt{21}sin30^{\circ}}{sin120^{\circ}}\right)$ must be explicit: $\left(\frac{PO}{sin30^{\circ}} = \frac{their\sqrt{21}}{sin120^{\circ}}\right)$ is not M1 $\frac{PO}{1} = \frac{their\sqrt{21}}{\frac{1}{2}}$ (error in denominator) $error in denominator)$ and $error in denominator)$ and $error in denominator)$ (rearranged correctly) would be M1	
	$(PO =) \sqrt{7}$	A1		
	Additional Guidance on next page			

Additional Guidance		
POM = 60° where M is the midpoint of PR	В0	
Final answer coming from double errors in surd manipulation	B2 M3 A0 or B2 M2 A0	