



# **Chemistry A**

Advanced GCE Unit **F325:** Equilibria, Energetics and Elements

## Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Annotations available in Scoris.

| Annotation   | Meaning                                |
|--------------|----------------------------------------|
| THUE         | Benefit of doubt given                 |
| CON          | Contradiction                          |
| ×            | Incorrect response                     |
|              | Error carried forward                  |
| I            | Ignore                                 |
|              | Not answered question                  |
| NICO         | Benefit of doubt not given             |
| POT          | Power of 10 error                      |
|              | Omission mark                          |
|              | Rounding error                         |
|              | Error in number of significant figures |
| $\checkmark$ | Correct response                       |

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

| Annotation   | Meaning                                                    |
|--------------|------------------------------------------------------------|
| DO NOT ALLOW | Answers which are not worthy of credit                     |
| IGNORE       | Statements which are irrelevant                            |
| ALLOW        | Answers that can be accepted                               |
| ()           | Words which are not essential to gain credit               |
| _            | Underlined words must be present in answer to score a mark |
| ECF          | Error carried forward                                      |
| AW           | Alternative wording                                        |
| ORA          | Or reverse argument                                        |

The following questions should be annotated with ticks, crosses, etc. Annotations should be placed to clearly show where they apply within the body of the text (i.e. not in margins)

| Question 1(b)(i), (c), (d); | Question 2(a)(iii); | Question 3c(ii);    |
|-----------------------------|---------------------|---------------------|
| Question 4a(i), (b)(iii);   | Question 5(b);      | Question 7(b), (c). |

| Q | uesti | on | Answer                                                                                                                                                            | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---|-------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | (a)   |    | (The enthalpy change that accompanies)<br>the formation of <b>one mole</b> of a(n ionic) compound ✓<br>from its <b>gaseous ions</b> ✓ (under standard conditions) | 2     | IGNORE 'Energy needed' OR 'energy required'<br>ALLOW as alternative for compound: lattice, crystal,<br>substance, solid, product<br>Note: 1st mark requires 1 mole<br>2nd mark requires gaseous ions<br>IF candidate response has '1 mole of gaseous ions',<br>award 2nd mark but NOT 1st mark<br>IGNORE reference to 'constituent elements'<br>IGNORE: Li <sup>+</sup> (g) + F <sup>-</sup> (g) $\longrightarrow$ LiF(s)<br>Question asks for a definition, not an equation |

| Q | uestic | on  | Answer                                                                                                                                                                                                                                                                                                                                                                                   | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|--------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | (b)    | (i) | <ol> <li>Mark Line 1 first as below (right or wrong)</li> <li>Mark Line 4 as below (right or wrong)</li> <li>Mark difference in species on Line 1 and Line 2<br/>MUST match one of the enthalpy changes in the table:<br/>atomisation of Li(s)<br/>atomisation of ½F<sub>2</sub>(g)<br/>first ionisation energy of Li(g)</li> <li>Repeat for differences on Line 2 and Line 3</li> </ol> |       | ANNOTATIONS MUST BE USED ALLOW marks by ECF as follows: Follow order at top of Answer column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |        |     | 4 $Li^+(g) + F(g) + e^-$<br>3 $Li(g) + F(g)$<br>2 $Li(g) + I/_2F_2(g)$<br>1 $Li(s) + I/_2F_2(g)$<br>Correct species and state symbols required for all marks<br>IF an electron has formed, it MUST be shown as $e^-$ OR e                                                                                                                                                                | 4     | ALLOW atomisation of $\frac{1}{2}F_2(g)$<br>before atomisation of Li(g):<br>4 $\frac{\text{Li}^+(g) + F(g) + e^-}{4}$<br>3 $\frac{\text{Li}(g) + F(g)}{4}$<br>2 $\frac{\text{Li}(g) + F(g)}{4}$<br>2 $\frac{\text{Li}(g) + F(g)}{4}$<br>2 $\frac{\text{Li}(g) + F(g)}{4}$<br>2 $\frac{\text{Li}(g) + F(g) + e^-}{4}$<br>3 $\frac{\text{Li}^+(g) + F(g) + e^-}{4}$<br>3 $\frac{\text{Li}^+(g) + e^- + \frac{1}{2}F_2(g)}{4}$<br>2 $\frac{\text{Li}(g) + \frac{1}{2}F_2(g)}{4}$<br>4 $\frac{\text{Li}^+(g) + e^- + \frac{1}{2}F_2(g)}{4}$<br>2 $\frac{\text{Li}(g) + \frac{1}{2}F_2(g)}{4}$<br>4 $\frac{\text{Li}^+(g) + e^- + \frac{1}{2}F_2(g)}{4}$<br>4 $\frac{\text{Li}^+(g) + e^- + \frac{1}{2}F_2(g)}{4}$<br>4 $\frac{\text{Li}(g) + \frac{1}{2}F_2(g)}{4}$<br>4 $\frac{\text{Li}^+(g) + e^- + \frac{1}{2}F_2(g)}{4}$<br>4 $\frac{\text{Li}(g) + \frac{1}{2}F_2(g)}{4}$<br>4 $\frac{\text{Li}(g) + \frac{1}{2}F_2(g)}{4}$<br>4 $\frac{\text{Li}(g) + \frac{1}{2}F_2(g)}{4}$<br>4 $\frac{1}{4}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{2}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{2}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{2}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{2}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{4}$<br>5 $\frac{1}{2}$<br>5 $\frac{1}{4}$<br>5 $\frac$ |
|   |        |     |                                                                                                                                                                                                                                                                                                                                                                                          |       | Line 4: Missing e <sup>-</sup> and rest correct 3 marks<br>Line 1: IF $\frac{1}{2}F_2(g)$ is NOT shown 2 max<br>[Line 4 and Li(s) $\rightarrow$ Li(g)]<br>e.g., for F(g), F(s), F(l), F(aq), F <sub>2</sub> (g)<br>DO NOT ALLOW F <sup>1</sup> when first seen but credit subsequently                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Quest | tion   | Answer                                                                                                                                                                                                                                                                                                                               | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 (b) | ) (ii) | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF answer = -1046 (kJ mol <sup>-1</sup> ) award 2 marks<br>(-616) = (+159) + (+79) + (+520) + (-328) + $\Delta H_{LE}$ (LiF)<br>OR<br>$\Delta H_{LE}$ (LiF) = (-616) -[ (+159) + (+79) + (+520) + (-328) ]<br>$\checkmark$<br>= -616 - 430<br>= -1046 (kJ mol <sup>-1</sup> ) $\checkmark$ | 2     | IF there is an alternative answer, check the list below for<br>marking of answers from common errors<br>ALLOW for 1 mark:<br>+1046 wrong sign<br>-186 +430 instead of -430<br>+186 +616 instead of -616<br>-1006.5 (+79) $\Delta H_{at}(F)$ halved to +39.5<br>-1702 wrong sign for 328<br>Any other number:<br>CHECK for ECF from 1st marking point for expressions with<br>ONE error only<br>e.g. one transcription error: e.g. +195 instead of +159 |
| (c)   |        | $\Delta H < T\Delta S  OR \Delta H - T\Delta S < 0$ OR $\Delta H \text{ is more negative than } T\Delta S$ OR Negative value of $\Delta H$ is more significant than negative value of $T\Delta S \checkmark$ NOTE IGNORE comments about $\Delta G$                                                                                   | 1     | ANNOTATIONS MUST BE USED         ALLOW 'exothermic' for negative         ALLOW a negative lattice energy value         ALLOW $\Delta H$ is negative AND         magnitude of $\Delta H$ > magnitude of $T\Delta S$ IGNORE ONLY magnitude of $\Delta H$ > magnitude of $T\Delta S$                                                                                                                                                                      |

## Mark Scheme

| Question | Answer Marks Guidance                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                            |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1 (d)    | <ul> <li>For FIRST TWO marking points, assume that the following etc.</li> <li>For 'ions', ALLOW 'atoms'</li> <li>For Mg<sup>2+</sup>, Na<sup>+</sup>, Cl<sup>-</sup> and F<sup>-</sup>, ALLOW symbols: Mg, N</li> <li>ALLOW names: magnesium, sodium, chlorine, chl <i>i.e.</i> ALLOW Mg has a smaller (atomic) radius</li> <li>For THIRD marking point, IONS must be used</li> </ul> | la, CI and | DO NOT ALLOW molecules<br>ALLOW F <i>l</i> for F                                                                                                                                                                                                                                                                           |  |
|          | Comparison of size of anions<br>Chloride ion OR Cl <sup>−</sup> is larger (than F <sup>−</sup> )<br>OR Cl <sup>−</sup> has smaller charge density (than F <sup>−</sup> ) ✓                                                                                                                                                                                                             |            | ORA<br>F <sup>−</sup> is smaller<br>OR<br>F <sup>−</sup> has a larger charge density ✓<br>IGNORE just Cl <sup>−</sup> is large comparison required                                                                                                                                                                         |  |
|          | Comparison of size AND charge of cations<br>Mg <sup>2+</sup> is smaller (than Na <sup>+</sup> )<br>AND<br>Mg <sup>2+</sup> has a greater charge (than Na <sup>+</sup> ) ✓                                                                                                                                                                                                              |            | ORA:<br>Na <sup>+</sup> is larger AND Na <sup>+</sup> has a smaller charge ✓<br>IGNORE just Mg <sup>2+</sup> is small comparison required<br>ALLOW 'greater charge density' for 'greater charge' but NOT<br>for smaller size                                                                                               |  |
|          | Comparison of attraction between ions<br>F <sup>−</sup> has greater attraction for Na <sup>+</sup> / + ions<br>AND<br>Mg <sup>2+</sup> has greater attraction for F <sup>−</sup> / – ions ✓<br>Quality of Written Communication:                                                                                                                                                       | 3          | <ul> <li>+ AND – IONS must be used for this mark</li> <li>IGNORE greater attraction between ions in NaF AND MgF<sub>2</sub></li> <li>+ AND – ions OR oppositely charged ions are required</li> <li>ASSUME attraction to be electrostatic unless stated otherwise:</li> <li>e.g. DO NOT ALLOW nuclear attraction</li> </ul> |  |
|          | Third mark needs to link ionic size and ionic charge with the attraction that results in lattice enthalpy                                                                                                                                                                                                                                                                              |            | ALLOW pull for attraction<br>ALLOW 'attracts with more force' for greater attraction<br>IGNORE just 'greater force' ( <i>could be repulsion</i> )<br>IGNORE comparison of bond strength/energy to break bonds<br>IGNORE comparisons of numbers of ions<br>IGNORE responses in terms of packing                             |  |
|          | Total                                                                                                                                                                                                                                                                                                                                                                                  | 12         |                                                                                                                                                                                                                                                                                                                            |  |

| C | Question |      | Answer                                                                | Marks | Guidance                                             |
|---|----------|------|-----------------------------------------------------------------------|-------|------------------------------------------------------|
| 2 | (a)      | (i)  | $(K_{c} =) \frac{[CO_{2}]^{2} [N_{2}]}{[CO]^{2} [NO]^{2}} \checkmark$ | 1     | Square brackets required for ALL four concentrations |
|   |          | (ii) | dm <sup>3</sup> mol <sup>−1</sup> ✓                                   | 1     | ALLOW mol <sup>-1</sup> dm <sup>3</sup>              |

| ( | Quest | ion   | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | (a)   | (iii) | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF answer = 0.95 award 4 marks<br>Equilibrium amounts:<br>$n(CO) = 0.46 - 0.20 = 0.26 \text{ mol } \checkmark$<br>$n(CO_2) = 0.2(0) \text{ mol } \checkmark$<br>$n(N_2) = 0.1(0) \text{ mol } \checkmark$<br>$K_c$ calculation<br>Must use calculated equilibrium amounts AND 0.25<br>$(K_c = ) \frac{0.20^2 \times 0.10}{0.26^2 \times 0.25^2} = 0.95 \text{ (dm}^3 \text{ mol}^{-1}) \checkmark$ | 4     | ANNOTATIONS MUST BE USEDIF there is an alternative answer, apply ECF by checking<br>working for intermediate marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Common errors<br>1.89 3 marks use of $n(N_2) = 0.2(0)$ mol<br>$\frac{(K_c =)}{0.26^2 \times 0.25^2} = 1.893491124 \text{ (dm}^3 \text{ mol}^{-1}) \checkmark$ 1.29 3 marks 0.45 and 0.46 swapped over<br>$n(CO) = 0.45 - 0.21 = 0.24 \text{ mol }\checkmark$<br>$n(N_2) = 0.21 \text{ mol }\checkmark$<br>$n(N_2) = 0.105 \text{ mol }\checkmark$<br>$(K_c =) \frac{0.21^2 \times 0.105}{0.24^2 \times 0.25^2} = 1.28625 \text{ (dm}^3 \text{ mol}^{-1}) \checkmark$<br>1.0243 marks 0.45 used twice<br>$n(CO) = 0.45 - 0.20 = 0.25 \text{ mol }\checkmark$<br>$n(N_2) = 0.1(0) \text{ mol }\checkmark$<br>$n(N_2) = 0.1(0) \text{ mol }\checkmark$<br>$n(N_2) = 0.1(0) \text{ mol }\checkmark$<br>$(K_c =) \frac{0.20^2 \times 0.10}{0.25^2 \times 0.25^2} = 1.024 \text{ (dm}^3 \text{ mol}^{-1}) \checkmark$<br>1.1853 marks 0.46 used twice<br>$n(CO_2) = 0.21 \text{ mol }\checkmark$<br>$n(N_2) = 0.105 \text{ mol }\checkmark$ |

| ( | Question |      | Answer                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | (a)      | (iv) | Mark ECF from (iii)<br>IF $K_c$ from (iii) < 1 equilibrium to left/towards reactants<br>OR<br>IF $K_c$ from (iii) > 1 equilibrium to right/towards<br>products $\checkmark$                                                                                                                                                                                                                                                      | 1     | First look at $K_c$ value for (iii) at bottom of cut<br>ALLOW favours reverse reaction<br>For correct $K_c$ value in (iii) of 0.95,<br>ALSO ALLOW equilibrium position near to centre $\checkmark$                                                                                                                                                                                                                                                                                                             |
|   | (b)      | (i)  | $K_c$ has decreased<br><b>AND</b><br>$\Delta H$ is negative <b>OR</b> (forward) reaction is exothermic ✓                                                                                                                                                                                                                                                                                                                         | 1     | Statement <b>AND</b> reason required for mark <b>ALLOW</b> for reason: reverse reaction is endothermic                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |          | (ii) | <ul> <li>Effect of <i>T</i> and <i>P</i> on equilibrium         <ul> <li>(increased) temperature shifts equilibrium to left AND                 (increased) pressure shifts equilibrium to right AND                 fewer (gaseous) moles on right-hand side ✓</li> </ul> </li> <li>Overall effect on equilibrium         <ul> <li>Difficult to predict relative contributions of two opposing factors ✓</li> </ul> </li> </ul> | 2     | <ul> <li>Reason ONLY required for pressure<br/>Temperature and ∆H had been <i>required in (i)</i></li> <li>ALLOW ratio of (gas) moles is 4:3</li> <li>ALLOW opposing effects may not be the same size<br/>ALLOW effects could cancel each other out<br/>ALLOW effects oppose one another</li> <li>DO NOT ALLOW just 'it is difficult to predict equilibrium<br/>position' (<i>in question</i>)</li> <li>For the 2nd mark, we are assessing the idea that we don't<br/>know which factor is dominant</li> </ul> |
|   |          |      | Total                                                                                                                                                                                                                                                                                                                                                                                                                            | 10    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| C | Questi | on    | Answer                                                                                                                                                                                   | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---|--------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (a)    | (i)   | $(K_{a} =) \frac{[H^{+}][CH_{3}(CH_{2})_{2}COO^{-}]}{[CH_{3}(CH_{2})_{2}COOH]} \checkmark$ $pK_{a} = -\log K_{a} = 4.82 \checkmark$                                                      | 1     | ALLOW $CH_3CH_2CH_2COOH$ OR $C_3H_7COOH$ in expression<br>DO NOT ALLOW use of HA and A <sup>-</sup> in this part.<br>DO NOT ALLOW:<br>$\frac{[H^+][CH_3(CH_2)_2COO^-]}{[CH_3(CH_2)_2COOH]} = \frac{[H^+]^2}{[CH_3(CH_2)_2COOH]}$ CON<br>ALLOW 4.82 up to calculator value of 4.821023053                                                                                                                                                                                                              |
|   |        | (iii) | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF answer = 2.71 award 3 marks                                                                                                                 |       | DO NOT ALLOW 4.8<br>IF alternative answer to more or fewer decimal places, check<br>calculator value and working for 1st and 2nd marks<br>ALLOW use of HA and A <sup>-</sup> in this part                                                                                                                                                                                                                                                                                                             |
|   |        |       | $[H^{+}] = \sqrt{[K_{a}][CH_{3}(CH_{2})_{2}COOH]} \text{ OR } \sqrt{1.51 \times 10^{-5} \times 0.250}$ $\checkmark$ $[H^{+}] = 1.94 \text{ x } 10^{-3} \text{ (mol dm}^{-3}) \checkmark$ |       | <b>Calculator</b> : 1.942935923 x $10^{-3}$<br><b>ALLOW</b> use of calculated $K_a$ value, either calculator value or rounded on script.<br>pH <b>must</b> be to 2 decimal places                                                                                                                                                                                                                                                                                                                     |
|   |        |       | pH = -log[H <sup>+</sup> ] = 2.71 ✓                                                                                                                                                      | 3     | ALLOW ECF from incorrectly calculated [H <sup>+</sup> ] and pH ONLY         when values for both $K_a$ AND [CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COOH] have been         used, i.e. $1.5 \ge 10^{-5}$ AND 0.250. e.g.:         pH = $5.42 \ge marks$ $-log(1.51 \ge 10^{-5} \ge 0.250)$ pH = $2.11 \ge marks$ $-log(\sqrt{\frac{1.51 \ge 10^{-5}}{0.250}})$ pH = $4.22 \le 1 mark$ $-log(\frac{1.51 \ge 10^{-5}}{0.250})$ No $$ DO NOT ALLOW just $-log(1.51 \ge 10^{-5}) = 4.82$ NO MARKS |

| C | Questi | on   | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                                               |
|---|--------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (b)    | (i)  | $Mg + 2H^{+} \longrightarrow Mg^{2+} + H_2 \checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1     | IGNORE state symbols<br>ALLOW Mg + 2 CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COOH $\longrightarrow$<br>2CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COO <sup>-</sup> + Mg <sup>2+</sup> + H <sub>2</sub><br>DO NOT ALLOW on RHS: (CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COO <sup>-</sup> ) <sub>2</sub> Mg <sup>2+</sup><br><i>lons must be shown separately</i> |
|   |        | (ii) | $CO_3^{2-} + 2H^+ \longrightarrow H_2O + CO_2 \checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1     | <b>IGNORE</b> state symbols<br><b>ALLOW</b> $CO_3^{2^-}$ + 2 $CH_3(CH_2)_2COOH \longrightarrow$<br>2 $CH_3(CH_2)_2COO^-$ + $H_2O$ + $CO_2$<br><b>ALLOW</b> as product $H_2CO_3$                                                                                                                                                                                                        |
|   | (c)    | (i)  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COONa <b>OR</b> CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COO <sup>−</sup> forms<br><b>OR</b><br>CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COOH + OH <sup>−</sup> $\rightarrow$ CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COO <sup>−</sup> + H <sub>2</sub> O $\checkmark$<br>CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COOH is in excess <b>OR</b> acid is in excess<br><b>OR</b> some acid remains $\checkmark$ | 2     | ALLOW names throughout<br>ALLOW 'sodium salt of butanoic acid'<br>ALLOW $CH_3(CH_2)_2COOH + NaOH \rightarrow CH_3(CH_2)_2COONa + H_2O$<br>DO NOT ALLOW just 'forms a salt/conjugate base'<br>i.e. identity of product is required                                                                                                                                                      |

| C | Question |      | Answer                                                                                                                                              | Marks | Guidance                                                                                                     |
|---|----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------|
| 3 | (c)      | (ii) | Moles (2 marks)<br>amount CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COOH = 0.0100 (mol) ✓                                                     |       | ANNOTATIONS MUST BE USED                                                                                     |
|   |          |      | amount CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COO <sup>−</sup> = 0.0025 (mol) ✓                                                            | 2     | ALLOW HA and A <sup>-</sup> throughout                                                                       |
|   |          |      | Concentration (1 mark)                                                                                                                              |       | Mark by ECF throughout                                                                                       |
|   |          |      | $[CH_3(CH_2)_2COOH] = 0.100 \text{ mol } dm^{-3}$<br>AND<br>$[CH_3(CH_2)_2COO^{-}] = 0.025 \text{ mol } dm^{-3} \checkmark$                         | 1     |                                                                                                              |
|   |          |      | [H <sup>+</sup> ] and pH (2 marks)                                                                                                                  |       | <b>ONLY</b> award final 2 marks via a correct pH calculation via                                             |
|   |          |      | $[H^+] = 1.51 \times 10^{-5} \times \frac{0.100}{0.025} = 6.04 \times 10^{-5} \text{ (mol dm}^{-3}\text{)}$                                         |       | $K_a \times \frac{[CH_3(CH_2)_2COOH]}{[CH_3(CH_2)_2COO^-]}$ using data derived from that in the              |
|   |          |      | ✓ pH = –log 6.04 x 10 <sup>-5</sup> = 4.22 ✓ pH to 2 DP                                                                                             | 2     | question (i.e. not just made up values)                                                                      |
|   |          |      | ALLOW alternative approach based on Henderson–Hase<br>$pH = pK_a + \log \frac{0.025}{0.100}$ OR $pK_a - \log \frac{0.100}{0.025}$ $\checkmark$ pH = |       | equation for final 2 marks<br>$0.60 = 4.22 \checkmark \text{ALLOW} -\log K_a \text{ for } pK_a$              |
|   |          |      | TAKE CARE with awarding marks for pH = 4.22                                                                                                         |       | Common errors                                                                                                |
|   |          |      | There is a mark for the concentration stage.<br>If this has been omitted, the ratio for the last 2 marks                                            |       | <b>pH = 4.12</b><br>use of initial concentrations: 0.250 and 0.050 given in question.                        |
|   |          |      | will be 0.0100 and 0.0025. 4 marks max.                                                                                                             |       | Award last 3 marks for:<br>0.250/2 AND 0.050/2 = 0.125 AND 0.025 ✓                                           |
|   |          |      | Common errors<br>pH = 5.42                                                                                                                          |       | $1.51 \times 10^{-5} \times \frac{0.125}{0.025} = 7.55 \text{ x } 10^{-5} \text{ (mol dm}^{-3}) \checkmark$  |
|   |          |      | As above for 4.22 but with acid/base ratio inverted.                                                                                                |       | pH = –log[H <sup>+</sup> ] = 4.12 ✓                                                                          |
|   |          |      | Award 4 OR 3 marks                                                                                                                                  |       | Award last 2 marks for:                                                                                      |
|   |          |      | Award zero marks for:<br>4.12 from no working or random values                                                                                      |       | $1.51 \times 10^{-5} \times \frac{0.250}{0.050} = 7.55 \text{ x } 10^{-5} \text{ (mol dm}^{-3}) \checkmark$  |
|   |          |      | pH value from $K_a$ square root approach (weak acid pH) pH value from $K_w$ /10 <sup>-14</sup> approach (strong base pH)                            |       | $pH = -log[H^+] = 4.12 \checkmark$ $pH = 5.52$                                                               |
|   |          |      |                                                                                                                                                     |       | As above for 4.12 but with acid/base ratio inverted.<br>Award 2 <b>OR</b> 1 marks as outlined for 4.12 above |

| Question          | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks      | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question<br>3 (d) | Answer<br>HCOOH + CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COOH $\Rightarrow$<br>HCOO <sup>-</sup> + CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COOH <sub>2</sub> <sup>+</sup><br>$\checkmark$<br>acid 1 base 2<br>base 1 acid 2 $\checkmark$<br>CARE:<br>Both + and – charges are required for the products in<br>the equilibrium<br>DO NOT AWARD the 2nd mark from an equilibrium<br>expression that omits either charge | Marks<br>2 | GuidanceState symbols NOT requiredALLOW 1 and 2 labels the other way around.ALLOW 'just acid' and 'base' labels throughout if linked by<br>lines so that it is clear what the acid-base pairs areFor 1st mark, DO NOT ALLOW COOH <sup>-</sup><br>(i.e. H at end rather than start)<br>but within 2nd mark ALLOW COOH <sup>-</sup> by ECFIF proton transfer is wrong way around then<br>ALLOW 2nd mark for idea of acid-base pairs, i.e.HCOOH + CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COOH =<br>HCOOH <sub>2</sub> <sup>+</sup> + CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COO <sup>-</sup> ×<br>base 2 acid 1 |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10         | acid 2 base 1 ✓<br>For H₂COOH <sup>+</sup> shown with wrong proton transfer,<br><b>DO NOT ALLOW</b> an <b>ECF</b> mark for acid–base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | Total                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| ( | Question |     | Answer                                                                                                                                                                                                                                          | Marks | Guidance                                                                                                                                                                      |
|---|----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | (a)      | (i) |                                                                                                                                                                                                                                                 |       | ANNOTATIONS MUST BE USED<br>Quality of Written Communication:                                                                                                                 |
|   |          |     | <i>initial rates data:</i><br>From Experiment 1 to Experiment 2<br>AND                                                                                                                                                                          |       | Changes <b>MUST</b> be linked to Experiment numbers <b>in writing</b> ( <i>Could be described unambiguously</i> )<br><b>IGNORE</b> annotations in the table                   |
|   |          |     | [NO <sub>2</sub> ] x 1.5, rate x 1.5 ✓                                                                                                                                                                                                          |       | For 2nd condition, <b>ALLOW</b> 'when [NO <sub>2</sub> ] increases by half, rate increases by half                                                                            |
|   |          |     | 1st order with respect to NO $_2 \checkmark$                                                                                                                                                                                                    |       | <b>NOTE</b> : Orders may be identified within a rate equation                                                                                                                 |
|   |          |     | From Experiment 2 to Experiment 3<br>AND<br>$[O_3]$ is doubled, rate x 2 $\checkmark$<br>1st order with respect to $O_3 \checkmark$<br>rate equation and rate constant:<br>rate = k[NO_2] [O_3] \checkmark<br>rate = $k[NO_2] [O_3] \checkmark$ |       | <b>ALLOW</b> : working from any of the Experiments<br>: All give the same calculated answer<br>0.0128 subsumes previous rearrangement mark                                    |
|   |          |     | $k = \frac{rate}{[NO_2][O_3]} \text{ OR } \frac{4.80 \times 10^{-8}}{0.00150 \times 0.00250} \checkmark$ $= 0.0128 \checkmark \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1} \checkmark$                                                          | 8     | ALLOW: $mol^{-1} dm^3 s^{-1} \checkmark$<br>DO NOT ALLOW 0.013 over-rounding                                                                                                  |
|   |          |     |                                                                                                                                                                                                                                                 |       | ALLOW ECF from inverted k expression: $k = \frac{[NO_2][O_3]}{rate}$ :<br>$k = 78.125 \checkmark$<br>ALLOW 3 SF or more<br>NOTE units must be from rate equation $\checkmark$ |

| C | Question |      | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks | Guidance                                                                                                                                                                                                                                                                                                                                                         |
|---|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | (a)      | (ii) | step 1: NO <sub>2</sub> + O <sub>3</sub> LHS of step one ✓         → NO <sub>3</sub> + O <sub>2</sub> step 2: NO <sub>2</sub> + NO <sub>3</sub> → N <sub>2</sub> O <sub>5</sub> rest of equations for step 1 AND step 2 ✓         CHECK that each equation is balanced         CARE:         Step 1 AND Step 2 must add up to give overall equation         In Step 2, IGNORE extra species shown on both sides, e.g. NO <sub>2</sub> + NO <sub>3</sub> + O <sub>2</sub> → N <sub>2</sub> O <sub>5</sub> + O <sub>2</sub> Step 2 can only gain a mark when Step 1 is correct | 2     | State symbols <b>NOT</b> required<br>For 'rest of equations', <b>ALLOW</b> other combinations that<br>together give the overall equation,<br>e.g.: $\longrightarrow NO_5$<br>$NO_2 + NO_5 \longrightarrow N_2O_5 + O_2$<br>e.g.: $\longrightarrow NO + 2O_2$<br>$NO + NO_2 + O_2 \longrightarrow N_2O_5$<br><b>DO NOT ALLOW</b> use of algebraic species, e.g. X |
|   | (b)      | (i)  | 3 gaseous moles $\longrightarrow$ 2 gaseous moles $\checkmark$<br>Less randomness <b>OR</b> becomes more ordered $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2     | <ul> <li>ALLOW products have fewer gaseous moles ORA</li> <li>ALLOW 'molecules' instead of 'moles'</li> <li>ALLOW fewer ways of distributing energy</li> <li>OR fewer degrees of freedom</li> <li>OR fewer ways to arrange</li> </ul>                                                                                                                            |
|   |          | (ii) | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF answer = -148 award 3 marks<br>$\Delta G = \Delta H - T\Delta S \checkmark$<br>= -198 - (298 x -168/1000) $\checkmark$<br>= -148 (kJ mol <sup>-1</sup> ) $\checkmark$                                                                                                                                                                                                                                                                                                                                                           | 3     | IF there is an alternative answer, check calculator value and<br>working for intermediate marks by ECF<br>                                                                                                                                                                                                                                                       |

| C | Question |       | Answer                                                                                                              | Marks | Guidance                                                                                                                 |
|---|----------|-------|---------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------|
| 4 | (b)      | (iii) | CARE: responses involve changes of negative                                                                         |       | ANNOTATIONS MUST BE USED                                                                                                 |
|   |          |       | values                                                                                                              |       |                                                                                                                          |
|   |          |       |                                                                                                                     |       | As alternative for 'not feasible'                                                                                        |
|   |          |       | Feasibility with increasing temperature                                                                             |       | ALLOW 'not spontaneous'                                                                                                  |
|   |          |       | Reaction becomes less feasible/not feasible<br>AND                                                                  |       | <b>OR</b> a comment that implies 'reaction does not take place'                                                          |
|   |          |       | $\Delta G$ increases <b>OR</b> $\Delta G$ becomes less negative                                                     |       | ALLOW for ∆G increases                                                                                                   |
|   |          |       | <b>OR</b> $\Delta G = 0$ <b>OR</b> $\Delta G > 0$ <b>OR</b> $\Delta G$ is positive                                  |       | $\Delta H = T\Delta S \text{ OR } \Delta H > T\Delta S \text{ OR } \Delta H - T\Delta S \text{ is positive}$             |
|   |          |       | <b>OR</b> $\Delta G$ approaches zero $\checkmark$                                                                   |       | <b>OR</b> $T \Delta S$ becomes more significant than $\Delta H$<br><b>OR</b> $T \Delta S$ becomes the same as $\Delta H$ |
|   |          |       | ***IF a candidate makes a correct statement about the                                                               |       | <b>OR</b> $T \Delta S$ becomes more negative than $\Delta H$                                                             |
|   |          |       | link between $\Delta G$ and feasibility, <b>IGNORE</b> an incorrect                                                 |       | NOTE Last statement will also score 2nd mark                                                                             |
|   |          |       | $\Delta H$ and $T\Delta S$ relationship<br><b>IF</b> there is no $\Delta G$ statement, then mark any $\Delta H$ and |       |                                                                                                                          |
|   |          |       | $T\Delta S$ relationship in line with the mark scheme                                                               |       |                                                                                                                          |
|   |          |       | · · · · · · · · · · · · · · · · · · ·                                                                               |       |                                                                                                                          |
|   |          |       | Effect on $T \triangle S$                                                                                           | 2     | <b>DO NOT ALLOW</b> $T \Delta S$ increases                                                                               |
|   |          |       | $T \Delta S$ becomes more negative <b>OR</b> $T \Delta S$ decreases<br><b>OR</b> $-T \Delta S$ increases            | 2     |                                                                                                                          |
|   |          |       | <b>OR magnitude</b> of $T\Delta S$ increases $\checkmark$                                                           |       |                                                                                                                          |
|   |          |       |                                                                                                                     |       |                                                                                                                          |
|   |          |       |                                                                                                                     |       | APPROACH BASED ON TOTAL ENTROPY:                                                                                         |
|   |          |       |                                                                                                                     |       | Feasibility with increasing temperature                                                                                  |
|   |          |       |                                                                                                                     |       | Reaction becomes less feasible/not feasible                                                                              |
|   |          |       |                                                                                                                     |       | <b>AND</b><br>$\Delta S = \Delta H/T \text{ OR } \Delta S_{\text{total}}$ decreases/ less positive                       |
|   |          |       |                                                                                                                     |       | <b>OR</b> $\Delta S$ outweighs/ is less significant than $\Delta H/T \checkmark$                                         |
|   |          |       |                                                                                                                     |       | Effect on ∆ <i>H</i> / <i>T</i>                                                                                          |
|   |          |       |                                                                                                                     |       | $\Delta H/T$ is less negative <b>OR</b> $\Delta H/T$ increases                                                           |
|   |          |       |                                                                                                                     |       | <b>OR</b> $-\Delta H/T$ decreases<br><b>OR</b> magnitude of $\Delta H/T$ decreases $\checkmark$                          |
|   |          |       | Total                                                                                                               | 17    |                                                                                                                          |

| C | Question |  | Answer                                                                                                                                  | Marks | Guidance                                                                                                                                                                                                                                                                                                     |
|---|----------|--|-----------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (a)      |  | (A transition element) has (at least) one <b>ion</b> with a partially filled d sub-shell/ d orbital ✓                                   |       | ALLOW incomplete for partially filled<br>DO NOT ALLOW d shell                                                                                                                                                                                                                                                |
|   |          |  | Fe <b>AND</b> 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>6</sup> 4s <sup>2</sup> ✓         |       | <b>ALLOW</b> 4s before 3d, i.e. 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 4s <sup>2</sup> 3d <sup>6</sup>                                                                                                                                                              |
|   |          |  | Fe(II) / Fe <sup>2+</sup> <b>AND</b> $1s^22s^22p^63s^23p^63d^6 \checkmark$                                                              |       | IF candidate has used subscripts OR caps OR [Ar],<br>DO NOT ALLOW when first seen but credit subsequently,                                                                                                                                                                                                   |
|   |          |  | Fe(III) / Fe <sup>3+</sup> <b>AND</b> 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>5</sup> ✓ | 4     | i.e. $1s_22s_22p_63s_23p_63d_64s_2$<br>$1s^22s^22p^63s^23p^64s^23D^6$<br>[Ar] $4s^23d^6$                                                                                                                                                                                                                     |
|   |          |  |                                                                                                                                         |       | For Fe <sup>2+</sup> and Fe <sup>3+</sup> , <b>ALLOW</b> 4s <sup>0</sup> in electron configuration                                                                                                                                                                                                           |
|   |          |  |                                                                                                                                         |       | IGNORE electron configurations of elements other than Fe                                                                                                                                                                                                                                                     |
|   | (b)      |  | EXAMPLES MUST REFER TO Cu <sup>2+</sup> FOR ALL<br>MARKS                                                                                |       | ANNOTATIONS MUST BE USED                                                                                                                                                                                                                                                                                     |
|   |          |  | PRECIPITATION<br>Reagent<br>NaOH(aq) OR KOH(aq) ✓<br>States not required                                                                | -     | ALLOW NaOH in equation if 'reagent' not given in description<br>ALLOW a small amount of NH <sub>3</sub> /ammonia<br>DO NOT ALLOW concentrated NH <sub>3</sub><br>DO NOT ALLOW just OH <sup>-</sup>                                                                                                           |
|   |          |  | <b>Transition metal product AND observation</b><br>Cu(OH) <sub>2</sub> <b>AND</b> blue precipitate/solid ✓                              |       | ALLOW Cu(OH) <sub>2</sub> (H <sub>2</sub> O) <sub>4</sub><br>ALLOW any shade of blue<br>ALLOW (s) as state symbol for ppt (may be in equation)                                                                                                                                                               |
|   |          |  | Correct balanced equation<br>$Cu^{2+}(aq) + 2OH^{-}(aq) \longrightarrow Cu(OH)_{2}(s) \checkmark$<br>state symbols <b>not</b> required  | 3     | <b>ALLOW</b> $[Cu(H_2O)_6]^{2^+}$ + 2OH <sup>-</sup> → Cu(OH) <sub>2</sub> (H <sub>2</sub> O) <sub>4</sub> + 2H <sub>2</sub> O<br>For NH <sub>3</sub> , also <b>ALLOW</b> :<br>$[Cu(H_2O)_6]^{2^+}$ + 2NH <sub>3</sub> → Cu(OH) <sub>2</sub> (H <sub>2</sub> O) <sub>4</sub> + 2NH <sub>4</sub> <sup>+</sup> |
|   |          |  | IF more than one example shown,<br>mark example giving lower mark                                                                       |       | ALLOW full equation,<br>e.g. $CuSO_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$<br>$CuCl_2 + 2NaOH \rightarrow Cu(OH)_2 + 2NaCI$                                                                                                                                                                               |

| ( | Question |     | n Answer                                                                                                                                                                               | Marks | Guidance                                                                                                                                                                       |
|---|----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (b)      |     | LIGAND SUBSTITUTION – 2 likely<br>Reagent<br>NH <sub>3</sub> (aq)/ammonia ✓<br>State not required                                                                                      |       | IF more than one example shown,<br>mark example giving lower mark<br>ALLOW NH <sub>3</sub> in equation if 'reagent' not given in description                                   |
|   |          |     | Transition metal product AND observation<br>$[Cu(NH_3)_4(H_2O)_2]^{2+}$ AND deeper/darker blue (solution)<br>$\checkmark$                                                              |       | <b>DO NOT ALLOW</b> precipitate <b>ALLOW</b> royal blue, ultramarine blue or any blue colour that is clearly darker than for $[Cu(H_2O)_6]^{2+1} \checkmark$                   |
|   |          |     | Correct balanced equation<br>$[Cu(H_2O)_6]^{2^+} + 4NH_3 \longrightarrow [Cu(NH_3)_4(H_2O)_2]^{2^+} + 4H_2O$ $\checkmark$                                                              | 3     |                                                                                                                                                                                |
|   |          |     | OR<br>Reagent<br>Concentrated HCI OR (dilute) HCI(aq) OR NaCI(aq) ✓<br>State not required<br>Transition metal product AND observation<br>[CuCl₄] <sup>2-</sup> AND yellow (solution) ✓ |       | ALLOW CuCl <sub>4</sub> <sup>2-</sup> i.e. no brackets<br>ALLOW any shades of yellow, e.g. yellow–green<br>DO NOT ALLOW precipitate                                            |
|   |          |     | Correct balanced equation<br>$[Cu(H_2O)_6]^{2^+} + 4Cl^- \longrightarrow [CuCl_4]^{2^-} + 6H_2O \checkmark$                                                                            |       | ALLOW other correct ligand substitutions using same principles for marking as in two examples given                                                                            |
|   | (c)      | (i) | Pt oxidised from 0 +4 ✓<br>N reduced from +5 to +4 ✓                                                                                                                                   | 2     | ALLOW 1 mark for<br>Pt from 0 to +4 AND N from +5 to +4<br>i.e. oxidation and reduction not identified or wrong way round<br>DO NOT ALLOW Pt is oxidised and N reduced with no |
|   |          |     |                                                                                                                                                                                        |       | evidence<br><b>DO NOT ALLOW</b> responses using other incorrect oxidation<br>numbers ( <b>CON</b> )                                                                            |

| Questio | n    | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Marks | Guidance                                                                                                                                                                                           |  |
|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5 (c)   | (ii) | $Pt + 6HCI + 4HNO_3 \longrightarrow H_2PtCI_6 + 4NO_2 + 4H_2O \checkmark \checkmark$                                                                                                                                                                                                                                                                                                                                                                               | 2     | 1st mark for ALL species correct and no extras: i.e:Pt + HCl + HNO3 $\longrightarrow$ H2PtCl6 + NO2 + H2ODO NOT ALLOW charge on Pt, e.g. Pt2+2nd mark for correct balancingALLOW correct multiples |  |
| (d)     |      | $\begin{bmatrix} C & C & C & C \\ C & P & C & C \\ C & C & C & C \\ C & P & C & C & C \\ C & P & C & C & C \\ C & P & C & C & C \\ C & P & C & C & C \\ C & P & C & C & C \\ \end{bmatrix}^{2} - \mathbf{OR}$ <b>3-D Shape 1 mark</b><br>Correct 3-D diagram of Pt surrounded by 6Cl<br>ONLY $\checkmark$ <b>Bond angle 1 mark</b><br>bond angle of 90° on diagram or stated $\checkmark$ <b>Charge 1 mark</b><br>2- charge shown outside of brackets $\checkmark$ | 3     | Must contain 2 'out wedges', 2 'in wedges' and 2 lines in<br>plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge'<br>For bond into paper, ALLOW:<br>''''''''''''''''''''''''''''''''''''      |  |

| C | Question |      | Answer                                                                 | Marks | Guidance                                                                                                                                                                                                      |
|---|----------|------|------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (e)      | (i)  | Donates <b>two</b> electron pairs to a <b>metal</b> (ion) $\checkmark$ |       | ALLOW lone pairs for electron pairs                                                                                                                                                                           |
|   |          |      | forms <b>two</b> coordinate bonds ✓                                    | 2     | <ul> <li>ALLOW dative (covalent) bond for coordinate bond</li> <li>ALLOW 1 mark for a full definition of a ligand (without reference to 2:</li> <li>i.e. Donates an electron pair to a metal (ion)</li> </ul> |
|   |          |      |                                                                        |       | forming <b>a</b> coordinate bond ✓                                                                                                                                                                            |
|   |          | (ii) |                                                                        |       | ALLOW displayed formulae                                                                                                                                                                                      |
|   |          |      |                                                                        |       | '– charges' essential in (COO <sup>–</sup> ) <sub>2</sub> structure                                                                                                                                           |
|   |          |      |                                                                        |       | DO NOT ALLOW –H <sub>2</sub> N                                                                                                                                                                                |
|   |          |      | $NH_2 \checkmark -0 0 \checkmark$                                      | 2     |                                                                                                                                                                                                               |
|   |          |      | Total                                                                  | 21    |                                                                                                                                                                                                               |

| ( | Question |             | Answer                                                                                                                                                                                                                                                                                                                                                                                               | Marks | Guidance                                                                                                                                                                                                                                                          |  |
|---|----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6 | (a)      | (i)<br>(ii) | complete circuit with <b>voltmeter</b> and <b>salt bridge</b> linking<br>two half-cells $\checkmark$<br>Pt electrode in Fe <sup>3+</sup> /Fe <sup>2+</sup> half-cell with <b>same</b><br>concentrations $\checkmark$<br>Cr electrode in 1 mol dm <sup>-3</sup> Cr <sup>3+</sup> half-cell $\checkmark$<br>Cr + 3Fe <sup>3+</sup> $\longrightarrow$ Cr <sup>3+</sup> + 3Fe <sup>2+</sup> $\checkmark$ | 3     | Salt bridge <b>MUST</b> be labelled<br><b>ALLOW</b> Fe <sup>2+</sup> and Fe <sup>3+</sup> with concentrations of 1 mol dm <sup>-3</sup><br><b>ALLOW</b> 1 M but <b>DO NOT ALLOW</b> 1 mol                                                                         |  |
|   |          |             |                                                                                                                                                                                                                                                                                                                                                                                                      |       | ALLOW $\rightleftharpoons$ sign<br><b>DO NOT ALLOW</b> if e <sup>-</sup> shown uncancelled on both sides,<br>e.g. Cr + 3Fe <sup>3+</sup> + 3e <sup>-</sup> $\longrightarrow$ Cr <sup>3+</sup> + 3Fe <sup>2+</sup> + 3e <sup>-</sup>                               |  |
|   |          | (iii)       | 1.51 V ✓                                                                                                                                                                                                                                                                                                                                                                                             | 1     | IGNORE sign                                                                                                                                                                                                                                                       |  |
|   | (b)      |             | $Cr_2O_7^{2-}$ <b>AND</b> H <sup>+</sup> $\checkmark$                                                                                                                                                                                                                                                                                                                                                | 1     | ALLOW acidified dichromate                                                                                                                                                                                                                                        |  |
|   | (c)      |             | $Cr_2O_7^{2-}(aq) + 8H^+(aq) + 3HCOOH(aq) \longrightarrow$<br>$2Cr^{3+}(aq) + 7H_2O(I) + 3CO_2(I)$<br>$\checkmark\checkmark$<br>State symbols <b>not</b> required                                                                                                                                                                                                                                    | 2     | <b>1st mark for ALL species correct and no extras:</b><br>$Cr_2O_7^{2^-}$ , H <sup>+</sup> , HCOOH, $Cr^{3^+}$ , H <sub>2</sub> O <b>AND</b> CO <sub>2</sub><br><b>NOTE</b> : H <sup>+</sup> may be shown on both sides<br><b>ALLOW</b> $\rightleftharpoons$ sign |  |
|   |          |             |                                                                                                                                                                                                                                                                                                                                                                                                      |       | <b>2nd mark</b> for correct balancing with $H^+$ cancelled down                                                                                                                                                                                                   |  |
|   | (d)      | (i)         | $E^{\circ}$ for chromium (redox system) is more<br>negative/lower/less (than copper redox system) <b>ORA</b> $\checkmark$                                                                                                                                                                                                                                                                            |       | ALLOW <i>E</i> <sub>cell</sub> is +1.08 V (sign required)                                                                                                                                                                                                         |  |
|   |          |             | chromium system shifts to the left /<br>$Cr(s) \longrightarrow Cr^{3^{+}}(aq) + 3e^{-}$<br>AND<br>copper system shifts to the right /<br>$Cu^{2^{+}}(aq) + 2e^{-} \longrightarrow Cu(s) \checkmark$                                                                                                                                                                                                  | 2     | ALLOW Cr loses electrons more readily/more easily oxidised<br>OR Cr is a stronger reducing agent<br>OR Cu loses electrons less readily<br>OR Cu is a weaker reducing agent                                                                                        |  |

| ( | Question   |             | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks | Guidance                                                                                                                                                                                                                                                  |
|---|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | (d)<br>(e) | (ii)<br>(i) | Cr reacts with H <sup>+</sup> ions/acid to form H <sub>2</sub> gas ✓<br>1.45 V ✓                                                                                                                                                                                                                                                                                                                                                                    | 1     | ALLOW equation:<br>$2Cr + 6H^+ \longrightarrow 2Cr^{3+} + 3H_2$ (ALLOW multiples)<br><b>DO NOT ALLOW</b> just 'hydrogen forms',<br>i.e. Cr, H <sup>+</sup> /acid <b>AND</b> H <sub>2</sub> must <b>all</b> be included for the mark<br><b>IGNORE</b> sign |
|   |            | (ii)        | <ol> <li>2 marks, ✓ ✓, for two points from the following list:</li> <li>1. Methanoic acid is a liquid AND easier to store/transport<br/>OR hydrogen is a gas AND harder to store/transport<br/>OR hydrogen as a liquid is stored under pressure</li> <li>2. Hydrogen is explosive/more flammable</li> <li>3. HCOOH gives a greater cell potential/voltage</li> <li>4. HCOOH has more public/political acceptance than hydrogen as a fuel</li> </ol> | 2     | ASSUME 'it' refers to HCOOH<br>DO NOT ALLOW 'produces no CO <sub>2</sub> '<br>IGNORE comments about biomass and renewable<br>HCOOH and H <sub>2</sub> are both manufactured from natural gas                                                              |
|   |            |             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14    |                                                                                                                                                                                                                                                           |

| ( | Question | Answer                                                                                            | Marks | Guidance                                                                                                                                                                                    |  |
|---|----------|---------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7 | (a)      | $ \begin{array}{rcccccccccccccccccccccccccccccccccccc$                                            | 2     | ALLOW 'e': i.e. – sign not required                                                                                                                                                         |  |
|   | (b)      |                                                                                                   | 2     | ANNOTATIONS MUST BE USED<br>ALLOW equation:<br>$CO_2 + H_2O \longrightarrow H_2CO_3$<br>$OR CO_2 + H_2O \longrightarrow H^+ + HCO_3^-$<br>$OR CO_2 + H_2O \longrightarrow 2H^+ + CO_3^{2-}$ |  |
|   |          | Effect on equilibrium with reason<br>equilibrium shifts to right AND to restore OH <sup>-</sup> ✓ | 3     | ALLOW for 'restores OH <sup>-</sup> ' the following: 'makes more OH <sup>-</sup> ',<br>'OH <sup>-</sup> has been used up'<br>DO NOT ALLOW just 'equilibrium shifts to right'                |  |

| Question |     | Answer                                                                                                                                                                        | Marks | Guidance                                                                                                                                                                                     |
|----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7        | (C) | FOLLOW through stages to mark<br>Moles in titration<br>$n(KMnO_4) = 0.0200 \times \frac{26.2}{1000} = 5.24 \times 10^{-4} \text{ mol } \checkmark$                            |       | ANNOTATIONS MUST BE USED<br>AT LEAST 3 SF for each step                                                                                                                                      |
|          |     | $n(\mathrm{SO_3}^{2-}) = 1.31 \times 10^{-3} \text{ mol } \checkmark$                                                                                                         |       | ECF 2.5 x answer above                                                                                                                                                                       |
|          |     | Scaling<br>$n(SO_3^{2-})$ in original 100 cm <sup>3</sup><br>= 4 x 1.31 x 10 <sup>-3</sup> = 5.24 x 10 <sup>-3</sup> mol $\checkmark$                                         |       | ECF 4 x answer above                                                                                                                                                                         |
|          |     | Mass<br>Mass of Na₂SO₃ in sample<br>= 126.1 x 5.24 x 10 <sup>-3</sup> g = 0.660764 g ✓                                                                                        |       | <b>ECF</b> 126.1 x answer above<br><b>ALLOW</b> 0.661 g up to calculator value                                                                                                               |
|          |     | Percentage<br>% Na₂SO₃ = $\frac{0.660764}{0.720}$ × 100 = 91.8% ✓                                                                                                             | 5     | ECF $\frac{\text{calculated mass above}}{0.720} \times 100$<br>ALLOW 91.8% (1 DP) up to calculator value of 91.77277778<br>i.e. DO NOT ALLOW 92%                                             |
|          |     | <b>ALLOW</b> alternative approach based on theoretical content of $Na_2SO_3$ for last 2 marks                                                                                 |       | COMMON ERRORS:           36.8(1)%         4 marks         no 2.5 factor           22.9(4)%         4 marks         no scaling by 4           9.18%         3 marks         no 2.5 and no x 4 |
|          |     | Theoretical amount, in moles, of Na <sub>2</sub> SO <sub>3</sub> in sample<br>$n(Na_2SO_3) = \frac{0.720}{126.1} = 5.71 \times 10^{-3} \text{ mol } \checkmark$<br>Percentage |       | Watch for random ECF %s for % from incorrect $M(Na_2SO_3)$ , e.g. use of $M(SO_3^{2^-})$ = 80.1 giving 58.3%                                                                                 |
|          |     | % Na <sub>2</sub> SO <sub>3</sub> = $\frac{5.24 \times 10^{-3}}{5.71 \times 10^{-3}} \times 100 = 91.8\%$ $\checkmark$ Total                                                  | 10    |                                                                                                                                                                                              |

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

**OCR Customer Contact Centre** 

#### **Education and Learning**

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553



