Please check the examination details below before entering your candidate information				
Candidate surname		Other names		
Pearson Edexcel	ntre Number	Candidate Number		
Thursday 9 Jan	uary	2020		
Morning (Time: 2 hours)	Paper Re	eference 4CH1/1C 4SD0/1C		
Chemistry Unit: 4CH1 Science (Double Award) 4SD0 Paper: 1C				
You must have: Calculator, ruler		Total Marks		

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ⅔ and then mark your new answer with a cross ⊠.

Information

- The total mark for this paper is 110.
- The marks for **each** question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

1 1 1 1 ydrogen 1 ydrogen 56 56 59 57 28 29 30 100 192 190 192 190 192 190 192 70 80 57 78 78 79 58 79 59 70 108 10 108 10 108 10 109 110 101 100 101 100 101 100		2 2 Helium	20 10 ⁿ Be	40 argon 18	84 krypton 36	131 Xenon 54	[222] R n 86	fully	
1 1 1 1 1 1 ydrogen 1 1 ydrogen 1 56 59 59 65 56 59 59 63.5 65 78 78 78 20 20 101 103 106 108 112 110 103 106 108 23 30 190 192 195 197 20 190 192 195 197 20 76 7 78 29 30 277] 190 192 195 197 20 76 7 78 79 80 80 77 78 73 80 80 277] 193 10 111 101 108 10 110 111 111 108 100 110 111 111		~	19 ا رانیه 19	35.5 CI chlorine 17	80 bromine 35	127 – 53	[210] At astatine 85	orted but not t	
1 1 1 1 1 1 vitrogen 1 vitrogen 56 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 57 28 271 103 101 103 103 106 110 192 190 192 190 192 190 192 190 192 190 192 70 80 277] 195 190 197 201 197 202 197 203 197 204 80 277 195 190 197 21 195 108 101 110 111 108 100 100 110 110 110 110 110 110 110 <td></td> <td>Q</td> <td>16 0 0 0 8</td> <td>32 Sulfur 16</td> <td>79 Selenium 34</td> <td>128 Te 52</td> <td>[209] Po 84</td> <td>ve been repo</td> <td></td>		Q	16 0 0 0 8	32 Sulfur 16	79 Selenium 34	128 Te 52	[209] Po 84	ve been repo	
1 1 1 1 1 1 vitrogen 1 vitrogen 56 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 57 28 271 103 101 103 103 106 110 192 190 192 190 192 190 192 190 192 190 192 70 80 277] 195 190 197 201 197 202 197 203 197 204 80 277 195 190 197 21 195 108 101 110 111 108 100 100 110 110 110 110 110 110 110 <td></td> <td>Ω</td> <td>14 7</td> <td>31 phosphorus 15</td> <td>75 As 33</td> <td>122 Sb 51</td> <td>209 Bi 83</td> <td>s 112-116 ha authenticated</td> <td></td>		Ω	14 7	31 phosphorus 15	75 As 33	122 Sb 51	209 Bi 83	s 112-116 ha authenticated	
1 1 1 1 Vitrogen 1 Vitrogen 56 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 50 59 60 103 101 103 101 103 102 195 190 192 190 192 190 192 190 192 190 195 70 90 50 50 51 197 70 90 51 197 70 90 50 100 71 101 103 100 103 100 103 100 103 100 101 110 101 101 102 103 103	D	4	6 Carbon	28 Silicon 14	73 Ge germanium 32	119 تا 50	207 Pb ^{lead} 82	omic numbers	
1 1 1 1 Vitrogen 1 Vitrogen 56 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 56 59 50 59 60 103 101 103 101 103 102 195 190 192 190 192 190 192 190 192 190 195 70 90 50 50 51 197 70 90 51 197 70 90 50 100 71 101 103 100 103 100 103 100 103 100 101 110 101 101 102 103 103		m	11 סיסים	27 Al aluminium 13	70 Ga ^{gallium} 31	115 Indium 49	204 TI thallium 81	ients with atc	itted. ber
1 1 H Marcen Variagen 1 Marcen 56 59 59 Fe Co Ni iron 27 28 101 103 106 1101 103 106 1101 103 106 1101 192 195 110 192 195 110 192 195 110 192 195 Mt Ds Mt Ds 109 195 103 109 195 103 109 101 103 109 100 103 109 110 103 109 110 103 109 110					65 Zn ^{zinc} 30	112 Cd cadmium 48	201 Hg 80	Elerr	been om ode num
1 2 7 9 1 1 7 9 1 1 1					63.5 Cu ^{copper} 29	108 Ag silver 47	197 Au ^{gold} 79	[272] Rg roentgenium 111	3) have l
1 2					59 Dickel 28	106 Pd ^{palladium} 46	195 Pt Platinum 78	[271] DS darmstadtium 110	ers 90-10 to the n
1 2 7 9 7 8 7 9 1 1 7 9 1 1 7 9 1 1 7 9 1 1 7 9 1 1 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					59 Co cobatt 27	103 Rh 163 45	192 I r 77	[268] Mt 109	ic numbo rounded
1 2 7 9 Key 7 9 Key 1 24 Key 23 24 Key 88 91 32 4 23 89 40 45 48 51 52 55 89 40 45 48 51 52 55 55 80 20 23 23 24 88 51 52 55	טחוכ	hydrogen Hydrogen			56 iron 26	101 Ru 144	190 Os osmium 76	[277] HS ^{hassium} 108	ds (atom
1 2 7 9 1 2 1 8 1 9 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 14 1 12 1 13 1 14 1 12 1 13 1 14 1 14 1 14 1 14 1 14 1 10 1 10 1 10 1 10 1 10 1 10 1					55 Mn ^{manganese} 25	[98] Tc technetium 43	186 Re 75	[264] Bh 107	e actinoi
1 2 7 9 1 8 1 9 1 9 1 9 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 14 1 13 1 13 1 14 1 14 1 14 1 14 1 14 1 14 1 14 1 14 1 14 1	D		mass bol number		52 Cr chromium 24	96 Mo 42	184 W tungsten 74	[266] Sg ^{seaborgium} 106) and thu d chlorin
1 2 7 9 8 9 1 2 8 9 11 12 12 9 13 4 11 12 12 12 13 45 14 20 15 24 16 40 17 12 11 12 12 20 13 139 13 139 13 139 14 27 15 27 16 40 17 22 13 139 14 178 15 139 16 178 17 139 17 139 17 139 16 40 17 139 17 139 17 139 17 139 17 139 17 178 17 178 17 139 17 139 17 139 17 139 <td< td=""><td></td><td>Key</td><td>ve atomic omic sym _{name} : (proton) r</td><td></td><td>51 vanadium 23</td><td>93 Nbb 41</td><td>181 Ta tantalum 73</td><td>[262] Db 105</td><td>ers 58-71</td></td<>		Key	ve atomic omic sym _{name} : (proton) r		51 vanadium 23	93 N bb 41	181 Ta tantalum 73	[262] Db 105	ers 58-71
1 2 7 9 1 2 8 4 8 Mg 11 12 8 40 11 12 12 24 8 Mg 8 40 11 12 8 40 8 88 8 88 8 56 8 137 13 139 33 137 13 139 8 88 8 88 8 88 8 88 8 56 53 58 8 57 23 1226 13 139 8 88 8 88 8 88 8 88 8 88 9 40 14 139 15 226 16 40 8 66 8 89 9 40 139 139 130 139 131 139			relati ato atomic		48 titanium 22	91 Zr 40	178 Hf hafnium 72	[261] Rf rutherfordium 104	ic numb ses of co
1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 12 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 12 1 <					45 Sc 21		139 La* 57	[227] AC* ^{actinium} 89	ds (atom mic mas
1 1 1 1 1 1 1 1 1 1		2	g beryllium 4	24 Mg 12	40 calcium 20	88 Sr 38 38	137 Ba ^{barlum} 56	[226] Ra 88	anthanoi ative ato
		~	ر الثانيس ع	23 Na 11	39 A Potassium 19	85 Rb 37	133 Cs caesium 55	[223] Fr ^{francium} 87	* The lá The reli

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

The Periodic Table of the Elements

P 5 9 9 2 3 A 0 2 2 8

This question is about gases in the atmosphere.	
(a) The box gives the names of some gases in the atmosphere.	
argon carbon dioxide helium nitrogen oxygen	
Choose gases from the box to answer these questions.	
Each gas may be used once, more than once or not at all.	
(i) Identify a noble gas.	(1)
(ii) Identify a gas that makes up about 78% of the atmosphere.	(1)
(iii) Identify a greenhouse gas.	(1)
(iv) Identify a gas produced by the thermal decomposition of calcium carbonate.	(1)
(b) Sulfur reacts with oxygen to produce sulfur dioxide gas.	
(i) Write a chemical equation for this reaction.	(1)
(ii) State an environmental problem caused when sulfur dioxide gas dissolves in water in the atmosphere.	
	(1)
(Total for Question 1 = 6 ma	rks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

2 The diagram shows the electronic configuration of an atom of an element.

(a) Complete the table by giving the missing information about this atom.

(5)

DO NOT WRITE IN THIS AREA

name of the part of this atom labelled Z	
number of protons in this atom	
number of the group that contains this element	
number of the period that contains this element	
the charge on the ion formed from this atom	

(b) This element has three isotopes.

The table shows the mass number and percentage abundance of each isotope in a sample of this element.

Mass number	Percentage abundance (%)
24	79.2
25	10.0
26	10.8

Calculate the relative atomic mass (A_r) of this element.

Give your answer to one decimal place.

(3)

relative atomic mass =

(Total for Question 2 = 8 marks)

DO NOT WRITE IN THIS AREA

(c) Iron can be formed by reacting aluminium powder with iron(III) oxide.

The diagram shows how this reaction can be demonstrated.

When the magnesium fuse is lit, a very exothermic reaction occurs.

(i) State the meaning of the term **exothermic**.

(1)

(ii) The equation for the reaction between aluminium and iron(III) oxide is

$$2Al + Fe_2O_3 \rightarrow 2Fe + Al_2O_3$$

Explain what this reaction shows about the relative reactivities of aluminium and iron.

(2)

(iii) Explain why the reaction between aluminium and iron(III) oxide is a redox reaction. (3)

(Total for Question 3 = 10 marks)

- **4** This question is about ionic compounds.
 - (a) The table shows the formulae of some positive and negative ions, and the formulae of some compounds containing these ions.

	Mg ²⁺	Al ³⁺	NH ₄ ⁺
S ²⁻	MgS	AI_2S_3	
NO ₃		Al(NO ₃) ₃	NH_4NO_3
CO ₃ ²⁻	MgCO₃		(NH ₄) ₂ CO ₃
(i)	Complete the table by giving	the three missing formulae.	(3)
(ii)	Give the name of the compou	and with the formula NH_4NO_3	(1)
	lium oxide, Na ₂ O, is an ionic co		
The	lium oxide, Na ₂ O, is an ionic co sodium and oxide ions are he State the meaning of the term	eld together by ionic bonds.	(2)
The	sodium and oxide ions are he State the meaning of the term	eld together by ionic bonds.	
The	sodium and oxide ions are he State the meaning of the term	eld together by ionic bonds.	
The	sodium and oxide ions are he State the meaning of the term	eld together by ionic bonds.	

(ii) The diagram shows the arrangement of the electrons in a sodium atom and in an oxygen atom.

Draw diagrams in the boxes to show the arrangement of the electrons in the ions of sodium oxide.

Include the charges on the ions.

(3)

sodium ion	oxide ion	sodium ion

(Total for Question 4 = 9 marks)

DO NOT WRITE IN THIS AREA

	(3)
test	
result with compound Q	
result with compound T	
(c) Compounds P, Q and R are members of the same homologous series.	
Give two characteristics of a homologous series.	(2)
1	
2	
(d) This is the displayed formula of an alkene, V.	
$\begin{array}{c c} H & H & H & H \\ & & & \\ C = C - C - C - H \\ H & H & H \end{array}$	
(i) Give the name of alkene V.	(1)
(ii) Draw the displayed formula of another alkene that is an isomer of alkene V.	(1)

(b) Describe a test that can be used to distinguish between compounds Q and T.

(e)	An organic compound has the percentage composition by mass	
• •		

 $C = 36.36\% \qquad H = 6.06\% \qquad F = 57.58\%$

(i) Show that the empirical formula of the compound is CH_2F

(2)

(ii) The relative molecular mass (M_r) of the compound is 66. Determine the molecular formula of the compound.

(2)

molecular formula =

(Total for Question 5 = 14 marks)

- 6 A student uses this method to investigate the reaction of dilute hydrochloric acid with zinc.
 - pour some dilute hydrochloric acid into a glass beaker
 - record the initial temperature of the acid
 - add a piece of zinc and stir the mixture
 - record the temperature of the mixture after one minute
 - (a) Write a word equation for the reaction of dilute hydrochloric acid with zinc.

(1)

(b) The diagram shows the thermometer readings for this reaction.

Complete the table, giving all values to the nearest 0.1°C.

(3)

temperature in °C after adding zinc	
temperature in °C before adding zinc	
temperature change in °C	

- (c) Another student repeats the method using five different metals to compare their reactivity.
 - (i) This student uses a polystyrene cup instead of a glass beaker.

1.....

2.....

Explain why a polystyrene cup is better than a glass beaker in this investigation.

(2)

(ii) Give three factors that the student should keep constant in this investigation.

(3)

(d) The table shows some of the student's results.

Metal added	Observation	Temperature change in °C
copper	no bubbling	0.0
iron	slow bubbling	
magnesium	rapid bubbling	8.7
tin	very slow bubbling	1.4
zinc	moderate bubbling	5.1

(i) State why there is no temperature change for copper.

(1)

(ii) Predict the temperature change for iron.	(1)
te	emperature change =°C
(iii) Deduce the order of reactivity of the five	metals. (1)
most reactive	
least reactive	(Total for Question 6 = 12 marks)

.....

7	This question is about some of the halogens and their compounds. (a) (i) Which element is a liquid at room temperature?					
	\mathbf{X}	A	astatine	(1)		
	\times	В	bromine			
	\times	С	chlorine			
	\mathbf{X}	D	iodine			
	(ii)	(1)				
	\mathbf{X}		astatine			
	\times	B	bromine			
	\times	С	chlorine			
	\times	D	iodine			
	(iii)	Wł	nich element is the least reactive?	(1)		
	\times	A	astatine	(=)		
	\times	В	bromine			
	\times	С	chlorine			
	X	D	iodine			

(b) A teacher uses displacement reactions to demonstrate the reactivities of some halogens.

She adds solutions of chlorine, bromine and iodine separately to three different sodium halide solutions.

The table shows some of the teacher's results.

	sodium chloride	sodium bromide	sodium iodide
chlorine solution	not done	solution turns orange	
bromine solution	solution stays orange	not done	solution turns brown
iodine solution		solution stays brown	not done

A change in colour of the solution indicates that a reaction has occurred.

(i) Complete the table by predicting the missing results.

(2)

(ii) State why the teacher does not add bromine solution to sodium bromide solution. (1)

(iii) The word equation for the reaction of bromine with sodium iodide is

bromine + sodium iodide \rightarrow iodine + sodium bromide

Write a chemical equation for this reaction.

(1)

(c) A technician sees an unlabelled bottle containing a liquid.

He knows that the liquid is a solution of one of these compounds.

- copper(II) chloride
- copper(II) bromide
- iron(II) chloride
- iron(II) bromide

Describe chemical tests that the technician could use to identify the compound in the solution.

(6)

(Total for Question 7 = 13 marks)

BLANK PAGE

(a) Carbon dioxide changes directly from a solid to a gas without becoming a liquid.(i) Give the name of the change of state from solid to gas.	(1)
(ii) Describe the test for carbon dioxide gas.	(2)
(b) Carbon dioxide is a simple molecular covalent substance. Explain why carbon dioxide turns from a solid to a gas at a very low temperature.	
	(2)
$\begin{array}{c} 20 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	

- (c) Diamond and graphite are both giant covalent substances made up of carbon atoms.
 - diamonds are used in cutting tools
 - graphite is used in pencils to make marks on paper

Explain, with reference to structure and bonding, why each substance is suitable for its particular use.

(Total for Question 8 = 11 marks)

BLANK PAGE

9 A student uses this apparatus to investigate the heat energy released when a liquid fuel is burned.

9 2 3 A 0 2 3

	κ.,				
[mass of $1.0 \mathrm{cm}^3$ of water = $1.0 \mathrm{g}$]					
[c for water = 4.2 J/g/°C]					
					(3)
(ii) The student burns 0.96 g of metha					
Calculate the molar enthalpy chan	ge, ΔH , in k	J/mol, for t	the combu	stion of me	ethanol.
Include a sign in your answer.					
$[M_r \text{ of methanol} = 32]$					(2)
					(3)
					kJ/mol
			=		KJ/MOI
(d) The table shows data book values for t combustion of some alcohols with diff molecule.					
Number of carbon atoms per molecule	1	2	3	4	5
	_720	_1270	_2020	-2600	_2220
Molar enthalpy change, ΔH , in kJ/mol	-730	-1370	-2020	-2680	-3320

(c) (i) Show that the heat energy change, Q, to raise the temperature of $100 \, \text{cm}^3$ of

water by 30 °C is approximately 13 kJ.

(i) Plot the data values from the table on the grid. Draw a straight line of best fit. (2) Number of carbon atoms per molecule 0 2 3 5 6 0 -500 -1000 -1500 -2000 ΔH in kJ/mol -2500 -3000 -3500 -4000 -4500 (ii) Deduce the value of ΔH for an alcohol with six carbon atoms per molecule. Show on the graph how you obtained your answer. (2) $\Delta H = \dots kJ/mol$ (iii) State the relationship between ΔH and the number of carbon atoms per molecule. (1)(Total for Question 9 = 15 marks)

25

			þ					
		d						
				Ż				
		5		n,		١.		
		А	К		1			
		9		5	4	Ø.		
			ų	şi	×?	Ż		
		٩,			2			
		A	é					
					2			
					7	4		
		4	÷	4	Ź	۴		
		4	2		4	5.		
		2	2	ń		μ		
		э	è		2			
					-	ø		
		1			2	ė.		
			ø					
			2		2	8		
		4	4	×.	÷.			
		5						
			ę					
		ĥ	à		2	2		
		ð	-	2	-5	۴		
					N	Ħ.		
		h	ę					
		Č	7		-5			
		2	2	2	2			
		a	=					
					ĸ			
		6	à	J	Ľ	2		
		9	ξ	ļ	Ę	Ş	Ş	
		3	Ì		Ś	2		
		4	Ì	1	ĺ			
		444	Ì	2	Ĺ			
		444	È		Ĺ			
			Ì		Ķ			
			ķ		K K			
			ķ		K S			
			É C					
			É C					
			É C					

P 5 9 9 2 3 A 0 2 6 2 8

 $3NO_2 + H_2O \rightarrow 2HNO_3 + NO$

Calculate the maximum mass, in tonnes, of nitric acid that could be produced in this reaction from 11.5 tonnes of nitrogen dioxide.

 $[1 \text{ tonne} = 1.0 \times 10^{6} \text{g}]$

(4)

mass of nitric acid = tonnes

(ii) Suggest what use can be made of the nitrogen monoxide gas formed in stage 3.

(1)

QUESTION 10 CONTINUES ON NEXT PAGE

(d) When copper(II) oxide reacts with dilute nitric acid, copper(II) nitrate is produced.

The equation for the reaction is

 $\text{CuO}~+~2\text{HNO}_3~\rightarrow~\text{Cu(NO}_3)_2~+~\text{H}_2\text{O}$

0.200 mol of nitric acid reacts with excess copper(II) oxide.

A mass of 15.3 g of copper(II) nitrate is produced.

Calculate the percentage yield of copper(II) nitrate.

 $[M_r \text{ of copper(II) nitrate} = 187.5]$

(3)

percentage yield =%

(Total for Question 10 = 12 marks)

TOTAL FOR PAPER = 110 MARKS

P 5 9 9 2 3 A 0 2 8 2 8