## AQA Level 2 Certificate in FURTHER MATHEMATICS (8365/1)

Paper 1

### Specimen 2020

Time allowed: 1 hour 45 minutes

#### Materials

#### For this paper you must have:

• mathematical instruments

You may not use a calculator



- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the bottom of this page.
- Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

#### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer booklet.

| Please write clearly, in block capitals, to allow character computer recognition. |                  |  |  |  |  |
|-----------------------------------------------------------------------------------|------------------|--|--|--|--|
| Centre number                                                                     | Candidate number |  |  |  |  |
| Surname                                                                           |                  |  |  |  |  |
| Forename(s)                                                                       |                  |  |  |  |  |
| Candidate signature                                                               |                  |  |  |  |  |





|       | Answei                           | r <b>all</b> questio | ons in the spaces provided. |   |           |
|-------|----------------------------------|----------------------|-----------------------------|---|-----------|
| 1 (a) | $\frac{y^6 \times y}{y^m} = y^4$ |                      |                             |   |           |
|       | Circle the value of <i>m</i> .   |                      |                             |   | [1 mark]  |
|       | -2                               | 1.5                  | 2                           | 3 |           |
|       |                                  |                      |                             |   |           |
|       |                                  |                      |                             |   |           |
| 1 (b) | $a^n \times a^5 = a^5$           |                      |                             |   |           |
|       | Work out the value of <i>n</i> . |                      |                             |   | [1 mark]  |
|       |                                  |                      |                             |   |           |
|       |                                  | Answer               |                             |   |           |
|       |                                  |                      |                             |   |           |
|       |                                  |                      |                             |   |           |
|       |                                  |                      |                             |   |           |
| 1 (c) | $(c^5)^p = (c^2)^6$              |                      |                             |   |           |
|       | Work out the value of <i>p</i> . |                      |                             |   | [2 marks] |
|       |                                  |                      |                             |   |           |
|       |                                  | <b>A</b>             |                             |   |           |
|       |                                  | Answer _             |                             |   |           |
|       |                                  |                      |                             |   |           |
|       |                                  |                      |                             |   |           |

| 2 | Solve $\sqrt[3]{7x-13} = 2$                    | [2 marks] |
|---|------------------------------------------------|-----------|
|   |                                                |           |
|   | x =                                            |           |
|   |                                                |           |
| 3 | $3a(2x-1) + 4(ax+5) \equiv 60x+b$              |           |
|   | Work out the values of <i>a</i> and <i>b</i> . | [4 marks] |
|   |                                                |           |
|   |                                                |           |
|   |                                                |           |
|   |                                                |           |
|   |                                                |           |
|   | <i>a</i> = <i>b</i> =                          |           |



5 
$$y = 2x^{10} - \frac{3}{x^2}$$
  
Work out  $\frac{dy}{dx}$  [3 marks]  
Answer  
6 Simplify fully  $\frac{15x^2y - 5xy^2}{12x - 4y}$  [3 marks]  
Answer  
Answer  
Answer

| 7 | ABCD is a rhombus with side length 8 cm<br>Angle $ABC = 60^{\circ}$                                |                         |
|---|----------------------------------------------------------------------------------------------------|-------------------------|
|   |                                                                                                    | Not drawn<br>accurately |
|   | $B \frac{60^{\circ}}{8 \text{ cm}} C$                                                              |                         |
|   | Work out the area of the rhombus.                                                                  |                         |
|   | Give your answer in the form $a\sqrt{b}$ cm <sup>2</sup> where <i>a</i> and <i>b</i> are integers. | [3 marks]               |
|   |                                                                                                    |                         |
|   |                                                                                                    |                         |
|   |                                                                                                    |                         |
|   |                                                                                                    |                         |
|   |                                                                                                    |                         |
|   |                                                                                                    |                         |
|   | Answer                                                                                             | cm <sup>2</sup>         |
|   |                                                                                                    |                         |
|   |                                                                                                    |                         |
|   |                                                                                                    |                         |

[3 marks]

|   | - |   |    |
|---|---|---|----|
| 6 | Γ | 1 |    |
| 2 |   | ÷ | i. |
| ٠ |   | J | ,  |

The curve  $y = 2x^3 - 3x^2 - 12x + 6$ has a maximum point at *L* (-1, 13) has a minimum point at *M* (2, -14) intersects the *y*-axis at *N*. The curve crosses the *x*-axis at three distinct points. On the axes below, sketch the curve. Label the points *L*, *M* and *N* on your sketch.









| 14 | Rationalise and simplify $\frac{\sqrt{3}-7}{\sqrt{3}+1}$                               |           |
|----|----------------------------------------------------------------------------------------|-----------|
|    | Give your answer in the form $a + b\sqrt{3}$ where <i>a</i> and <i>b</i> are integers. | [4 marks] |
|    |                                                                                        |           |
|    |                                                                                        |           |
|    |                                                                                        |           |
|    |                                                                                        |           |
|    | Answer                                                                                 | _         |
|    |                                                                                        |           |
|    |                                                                                        |           |
|    |                                                                                        |           |
|    |                                                                                        |           |
|    |                                                                                        |           |
|    |                                                                                        |           |
|    |                                                                                        |           |

Point A lies on the curve  $y = x^2 + 5x + 8$ 15 The x-coordinate of A is -415 (a) Show that the equation of the normal to the curve at *A* is 3y = x + 16[5 marks]

| 15 (b) | The normal at A also intersects the curve at B. |           |
|--------|-------------------------------------------------|-----------|
|        | Work out the <i>x</i> -coordinate of <i>B</i> . | [4 marks] |
|        |                                                 |           |
|        |                                                 |           |
|        |                                                 |           |
|        |                                                 |           |
|        |                                                 |           |
|        |                                                 |           |
|        | Answer                                          |           |
|        |                                                 |           |
|        |                                                 |           |
|        |                                                 |           |
|        |                                                 |           |
|        |                                                 |           |
|        |                                                 |           |
|        |                                                 |           |
|        |                                                 |           |
|        |                                                 |           |
|        |                                                 |           |

Г

| 16 | The coefficient of the $r^4$ to | erm in the expansion of | $(2r + a)^6$ | is 60 |           |
|----|---------------------------------|-------------------------|--------------|-------|-----------|
| 10 |                                 |                         | (2x + u)     | 13 00 |           |
|    | work out the possible value     | es of a.                |              |       | [4 marks] |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    | A                               | nswer                   |              |       | _         |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |
|    |                                 |                         |              |       |           |



| 20 (a) | Show that $2\cos^2\theta \equiv 2 - 2\sin^2\theta$                          | [1 mark]  |
|--------|-----------------------------------------------------------------------------|-----------|
|        |                                                                             |           |
| 20 (b) | Hence, solve $2\cos^2\theta + 3\sin\theta = 3$ for $0 < \theta < 180^\circ$ | [4 marks] |
|        |                                                                             |           |
|        | Answer                                                                      |           |
|        | END OF QUESTIONS                                                            |           |
|        |                                                                             |           |
|        |                                                                             |           |

