

Mark Scheme (Results)

Summer 2016

Pearson Edexcel International GCSE Chemistry (4CH0) Paper 1C Science Double Award (4SC0) Paper 1C

Pearson Edexcel Level 1/Level 2 Certificate Biology (KCH0) Paper 1C Science (Double Award) (KSC0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2016 Publications Code 4CH0_1C_1606_MS All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	B (condensation)		1
(b)	M1 (the particles/they) lose (kinetic) energy / have less energy	ACCEPT lose potential/heat energy	3
	M2 (the particles/they) move closer together / pack more closely	ACCEPT not as many gaps / smaller gaps REJECT refs to density	
	M3 (the particles/they) do not move as freely / move more slowly / move less randomly	ACCEPT molecules for particles	
	NB M1, M2 and M3 can be scored anywhere across the whole answer	REJECT atoms once only.	

Question number	Answer	Notes	Marks
2 (a)	A (argon)		1
(b)	CO_2 / H_2O do not allow as part of an equation	IGNORE names even if correct	1
(c) (i)	M1 (the copper) <u>reacts/combines</u> with oxygen / oxidised	IGNORE bonds with oxygen IGNORE burns / combusts REJECT refs to rust	2
	M2 to form copper(II) oxide	ACCEPT copper oxide REJECT any other oxidation state	
(ii)	the volume of a gas changes with temperature / gas expands when hot/heated	ACCEPT reverse argument IGNORE refs to density	1
(iii)	<u>all</u> the oxygen has reacted / the oxygen has been used up / no oxygen (left to react)	DO NOT ACCEPT refs to `not enough oxygen'	1
(d)	M1 (150 – 125) or 25 (cm ³)		2
	M2 (25/150) × 100 = 16.7 (%)	ACCEPT 17 / 16.67 / 16.Ġ	
	OR		
	M1 100 x (125/150) = 83.3 (cm ³)	ACCEPT 83 / 83.33/ 83.3	
	M2 100 - 83.3 = 16.7 (%)	REJECT 16.6 for M2	
	M2 is cq on M1	correct answer (with no working) scores 2	

Question number	Answer	Notes	Marks
3 (a)	D (filtration)		1
(b) (i)	(chromatography) paper	award one mark for each correct label solvent: ALLOW label line to any	3
		point under the solvent level	
		paper: ALLOW label line to paper, including under solvent level	
		original spot: has to be in the centre of the baseline i.e. below the visible spots	
(ii)	<u>Four</u> because there are <u>four</u> spots/dots (above the baseline in the chromatogram)	ALLOW blobs / marks / colours IGNORE refs to different heights	1

Question number	Answer	Notes	Marks
4 (a) (i)	E		6
(ii)	В		
(iii)	F		
(iv)	с		
(v)	F		
(vi)			
(b) (i)	M1 (bonding/shared) electrons		2
	M2 nuclei	ACCEPT protons / nucleus(es)	
	OR	nucleus(es)	
	M1 nuclei	ACCEPT	
	M2 bonding/shared electrons	nucleus(es)	
(ii)	A ₂ D / DA ₂	ACCEPT H ₂ O	1
		REJECT if charges shown	

Question number	Ans	wer	Notes	Marks
5 (a)	Metalaluminiumcopperironmagnesiumzinc	Highest temperature 42.0 25.0 29.0 46.5 31.5	M1 for magnesium and zinc M2 and M3 for other 3 metals – 1 mark for 2 correct, 2 marks for all 3 correct Penalise missing trailing 0 once only	3
(b) (i)	magnesium		mark csq on table in (a)	1
(ii)	it/copper does not re acid)	eact (with sulfuric	ACCEPT there is no reaction / the (sulfuric) acid does not react (with copper) IGNORE copper is unreactive	1
(c)	M1 (change/rise in t be) less	emperature would	ACCEPT halved IGNORE any quoted temperatures	2
	be heated) OR	solution/liquid (to of) energy distributed	ACCEPT there is more/twice as much solution/liquid to be heated ALLOW acid for solution/liquid REJECT the magnesium has to react with more acid M2 dep on M1	

Question number	Answer	Notes	Marks
6 (a) (i)	H [×] H NB H does not need to be shown if touching / overlapping circles are shown	ACCEPT any combination of dots and crosses if overlapping / touching circles used both electrons must be within the overlapping/touching area	1
(ii)	M1 weak forces (of attraction) between molecules / weak intermolecular forces	ACCEPT particles ACCEPT bonds for forces for both M1 and M2 ACCEPT correctly named IMF	2
	M2 (therefore) little (thermal/heat) energy required to overcome these forces / separate the molecules (into the gaseous state)	IGNORE more easily separated / easier to break REJECT atoms for both M1 and M2 NB any mention of breaking covalent or ionic bonds scores 0	
(b) (i)	M1 <u>atoms</u> of the same element M2 with different masses	atoms with same atomic number / atoms same number of protons different mass numbers / different numbers of neutrons IGNORE references to electrons unless incorrect	2
(ii)	1H 2H 3H protons 1 1 1 neutrons 0 1 2 electrons 1 1 1	one mark for each correct row	3

Question number	Answer	Notes	Marks
(c) (i)	exothermic		1
(ii)	$2H_2 + O_2 \rightarrow 2H_2O$	ACCEPT multiples and halves	2
	M1 all formulae correct	IGNORE state symbols even if	
	M2 balanced	incorrect	
(iii)	M1 (add to) <u>anhydrous/white</u> copper(II) sulfate	turns copper(II) sulfate from white to blue scores 2	2
	M2 turns blue		
	M2 dep on M1 or near miss	ACCEPT equivalent description of test with anhydrous cobalt(II) chloride (blue to pink)	
		IGNORE any references to testing with indicators	
(iv)	M1 <u>measure/determine</u> the boiling point	ACCEPT boil the water / heat until it boils	2
	M2 100 °C	it boils at 100 °C	
	OR	ALLOW "heat it and it boils at 100 °C " for 2	
	M1 <u>measure/determine</u> the melting/freezing point	ACCEPT freeze the water / cool until it freezes	
	M2 0°C	it freezes at 0 °C	
	OR	ALLOW "cool it and it freezes at 0 °C " for 2	
	M1 measure/determine the density		
	M2 1 g/cm ³		

Question number	Answer	Notes	Marks
7 (a) (i)	Any two from: M1 calcium/solid/it disappears	ACCEPT dissolves / gets smaller IGNORE mass decreases	2
	M2 bubbles (of gas) / fizzing / effervescence	ACCEPT gas given off IGNORE hydrogen given off IGNORE incorrect gas / colour	
	M3 <u>white</u> solid (forms) / <u>white</u> suspension (forms) / (liquid) turns milky / (liquid) turns cloudy / <u>white</u> trails forms	ACCEPT <u>white</u> precipitate forms	
	M4 calcium moves (up and down)	IGNORE floats REJECT refs to moving <u>on the</u> <u>surface</u>	
	M5 water/solution/liquid gets warm	ACCEPT temperature of water/solution/ liquid rises IGNORE refs to heat released	
(ii)	M1 any value greater than 7	ACCEPT "greater than 7"	2
	M2 hydroxide <u>ions</u> /OH ⁻ are present / calcium hydroxide/Ca(OH) ₂ is an alkali / calcium hydroxide/Ca(OH) ₂ is a base	ACCEPT metal hydroxides are alkalis/bases IGNORE hydroxides are alkalis/bases	
	M2 dep on correct or missing M1	IGNORE calcium is an alkali metal	
(b)	 M1 (Solid X) - CaO / calcium oxide M2 (Solution Y) - CaCl₂ / calcium chloride 	if both formula and name given both must be correct	3
	M3 (Solid Z) – CaCO ₃ / calcium carbonate	REJECT Ca(HCO ₃) ₂ / calcium hydrogencarbonate	

Question number	Answer	Notes	Marks
8 (a)	hydrated copper(II) sulfate open tube ice water NB the arrow must point to the solid	ACCEPT a flame if >1 arrow drawn, all must be correct	1
(b)	to condense the (water) vapour / steam	ACCEPT to cool the water vapour ACCEPT to cool/condense the gas (given off) IGNORE to condense the water IGNORE to stop the water escaping as water vapour IGNORE to condense the product	1
(c)	M1 $n(CuSO_4.5H_2O) = 2.50 \div 250 \text{ OR } 0.01$ (mol) M2 $n(H_2O) = 0.01 \times 5 \text{ OR } 0.05$ (mol) M3 mass of water = $(0.05 \times 18) = 0.9(0)$ (g) OR M1 $5 \times 18 \text{ OR } 90$ M2 $250 \text{ (g)} \rightarrow 90 \text{ (g)}$ M3 $2.50 \text{ (g)} \rightarrow 0.9(0) \text{ (g)}$ OR M1 $5 \times 18 \text{ OR } 90$ M1 $5 \times 18 \text{ OR } 90$ M2 $90 \div 250 \times 100 (\%) \rightarrow 36 (\%)$ M3 $36 (\%) \times 2.50 \text{ (g)} \rightarrow 0.9(0) \text{ (g)}$	mark csq throughout correct final answer (with no working) scores 3 ACCEPT calculations that use <i>A</i> _r of Cu as 63.5 (giving 0.9(05) (g) as a final answer) M2 subsumes M1 for all methods	3

Question number	Answer	Notes	Marks
9 (a)	M1 & M2 all points plotted correctly, to the nearest gridline	deduct one mark for each incorrectly plotted point	4
	M3 best fit straight line through first 3 points drawn with the aid of a rulerM4 best fit straight line through last 6 points drawn with the aid of a ruler	ALLOW M3 and M4 even if lines do not intersect	
(b) (i)	value correctly read (± 0.25 cm ³) to nearest gridline from candidate's graph (12.5 cm ³ if correctly drawn)	Do not award these marks if lines do not cross	1
(ii)	value correctly read (± 0.1°C) to nearest gridline from candidate's graph (10°C if correctly drawn)		1

Question number	Answer	Notes	Marks
9 (c)	M1 (water) – to remove/flush out solution (X)		2
	M2 (solution Y) – to remove the water / avoid diluting solution Y	ACCEPT so that the only liquid in the burette is solution Y	
		IGNORE to remove impurities for both M1 and M2	
(d)	solution Y is less concentrated (than solution X)	IGNORE references to reactivity	1
	OR solution (in Experiment 2) is less concentrated	ALLOW weaker / less strong instead of less concentrated	
		IGNORE refs to more/less acidic	
		ACCEPT reverse argument	

Question number	Answer	Notes	Marks
10 (a) (i)	QRSP		2
	M1 Q and P correct		
	M2 R and S correct		
(ii)	M1 magnesium chloride	ACCEPT correct formulae	2
	M2 hydrogen	IGNORE incorrect	
	M1 and M2 can be in either order		
(b)	M1 (add) (aqueous) silver nitrate / AgNO ₃	IGNORE refs to nitric acid	2
		do not award M1 if hydrochloric acid also added	
	M2 white precipitate (forms)	M2 dep on mention of silver nitrate in M1	

Question number	Answer	Notes	Marks
11 (a)	propane		1
(b)	C ₄ H ₁₀	ACCEPT H ₁₀ C ₄	1
		penalise incorrect use of symbols and subscripts	
		REJECT structural and displayed formulae	
(c)	W X Y	all three required	1
(d)	CH ₂	ACCEPT H ₂ C	1
		REJECT C _n H _{2n}	
(e)	M1 (unsaturated) contains a (carbon to carbon) double bond	ACCEPT multiple bonds IGNORE refs to single bonds	3
	M2 (hydrocarbon) (compound/molecule/substance) contains (the elements/atoms) hydrogen and carbon	REJECT element/atom/ mixture for compound/ molecule/substance REJECT ions/molecules for elements/atoms	
	M3 only	M3 dep on mention of hydrogen & carbon in M2 ACCEPT other equivalents e.g. solely, just, exclusively	
(f) (i)	Н Н Н H—С—С—С—Вr Н Н Н	ACCEPT bromine in any position ACCEPT multiple substitutions ACCEPT correct displayed formula given as a product of an equation IGNORE any structural formula eg CH ₃ CH ₂ CH ₂ Br or molecular formula IGNORE H–Br	1
(ii)	UV / ultraviolet light/radiation	IGNORE references to heat / (high) temperature / (high) pressure	

Question number	Answer	Notes	Marks
12 (a)	M1 (Fe) (Ti) (O) <u>36.8</u> <u>31.6</u> <u>31.6</u> 56 48 16	Division by atomic number scores 0	3
	M2 0.66 0.66 1.98	ACCEPT any number of sig figs except one	
	M3 1 1 3 OR	ALLOW 0.65, 0.65, 1.97	
	M1 calculation of M_r of FeTiO ₃ =152		
	M2 expression for % of <u>each</u> element e.g. Fe: $56 \div 152 \times 100\%$		
	M3 evaluation to show these equal 36.8% Fe, 31.6% Ti, 31.6% O		
(b)	 M1 (element oxidised) - carbon / C M2 (reason) - (it has) gained/ combined with oxygen / forms carbon dioxide M2 dep on M1 	IGNORE refs to electron loss ACCEPT oxidation state/ number increases ACCEPT oxidation state/ number changes from 0 to (+)4	2
(c) (i)	TiCl ₄ + 2Mg \rightarrow Ti + 2MgCl ₂ M1 all formulae correct M2 balanced	ACCEPT multiples and halves IGNORE state symbols even if incorrect	2
(ii)	titanium / Ti / magnesium / Mg reacts with oxygen OR titanium / Ti / magnesium / Mg reacts with nitrogen	IGNORE refs to oxidation ACCEPT forms an oxide ACCEPT forms a nitride	-
(iii)	<u>magnesium chloride</u> will dissolve more quickly / to help the <u>magnesium chloride</u> to dissolve / more of the <u>magnesium chloride</u> is in contact with the water	IGNORE to speed up the reaction IGNORE refs to increasing surface area	1

(d) (i)	M1 positive ions/cations/nuclei and delocalised electrons	IGNORE metal ions ALLOW sea of electrons IGNORE free electrons	2
	M2 attract (one another)		
	M2 dep on M1	any refs to ionic bonding, covalent bonding or IMFs scores zero	
(ii)	(delocalised) electrons can flow/move (through structure)/are mobile (when voltage/pd is applied)	IGNORE carry charge	1

Question number	Answer	Notes	Marks
13 (a)	$I_2 + CI_2 \rightarrow 2ICI$	ACCEPT halves and multiples	1
(b) (i)	M1 rate of forward reaction = rate of backwards reaction	ACCEPT both reactions occur at the same rate IGNORE forward reaction = backwards reaction	2
	M2 concentrations of reactants/ products remain constant	ACCEPT amounts/masses for concentrations ACCEPT don't change/stay for remain IGNORE concentrations/ amounts of reactants and products are the same/are equal ALLOW colour remains constant	
(ii)	 M1 equilibrium has shifted to the left / equilibrium has shifted to the ICl side / equilibrium has shifted to the reactants side OR more ICl has been produced / more reactants have been produced 	IGNORE references to Le Chatelier's principle e.g. an increase in temperature favours the endothermic reaction	2
	M2 an increase in temperature shifts the equilibrium in the endothermic direction	ACCEPT 'therefore the (backward) reaction is endothermic' for M2 if M1 has been awarded	

Question number		Answer		Notes	Marks
14 (a)	Solid	Amount		ALLOW values	2
	KHCO₃	0.080		(corrected	
	K ₂ O	0.059		rounded) from	
	КОН	0.099		1 sf up to	
	K ₂ CO ₃	0.040		calculator	
	all four correct = 2 marks three correct = 1 mark			value	
(b)	M1 equation 3			mark csq on amounts given	2
	M2 the (mole) ratio /reactant to pro			in part (a)	

Question number	Answer	Notes	Marks
15 (a)	Enthalpy change (of reaction) ACCEPT heat (energy) change		1
(b)	M1 temperature rise = 23.5 (°C)		3
	M2 heat produced = 200 x 4.2 x 23.5	Penalise use of 0.725 / 200.725 / 199.275 g in M2 only	
	M3 = 20000(J) OR 20 kJ unit must be given <u>if answer in kJ</u>	ACCEPT 19740 / 19700 (J) ACCEPT 19.74(0) / 19.7(00) kJ IGNORE sign	
		mark consequentially throughout	
		correct answer (with no working) scores 3	
(c) (i)	(the reaction is) exothermic		1
	OR		
	transfers heat/thermal energy to the surroundings / gives out	ACCEPT loses for gives out	
	heat/thermal energy OR	DO NOT ACCEPT just energy	
	gives out heat	ACCEPT loses for gives out	
(ii)	incomplete combustion/burning (of the butane)		1
	OR		
	(burns in a) limited supply of oxygen/air		
(iii)	less heat (energy) / thermal energy produced	ACCEPT less heat (energy) / thermal energy transferred to	1
	OR	the water	
	temperature rise less (than expected)	ALLOW soot has absorbed some of the heat (energy) / soot has acted as an insulator	
(iv)	heat/energy is lost to the air/ beaker/surroundings / water evaporates	ALLOW beaker is not insulated/has no lid ALLOW water is not stirred	1

Question number	Answer	Notes	Marks
16 (a)	to avoid loss of acid (spray) / solution / liquid OR <u>only</u> gas/carbon dioxide can escape	REJECT to avoid CaCO ₃ /solid escaping	1
(b)	carbon dioxide / gas	REJECT	1
	AND escapes / given off / released	incorrectly named gas	
(c) (i)			2
		M2 dep on M1	
(ii)		ACCEPT ions REJECT atoms / molecules	3
		ACCEPT per unit time / per minute	
		ACCEPT collision frequency increases	
		IGNORE any refs to chance of collisions	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL