Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination January 2009

Chemistry

CHEM1

Unit 1 Foundation Chemistry

Friday 9 January 2009 1.30 pm to 2.45 pm

For this paper you must have:						
a calculator.						

Time allowed

• 1 hour 15 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. **Answers written** in margins or on blank pages will not be marked.
- All working must be shown.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The Periodic Table/Data Sheet is provided as an insert.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- Your answers to the questions in Section B should be written in continuous prose, where appropriate.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Advice

 You are advised to spend about 50 minutes on Section A and about 25 minutes on Section B.

SECTION A

Answer all questions in the spaces provided.

- In 1913 Niels Bohr proposed a model of the atom with a central nucleus, made up of protons and neutrons, around which electrons moved in orbits. After further research, the model was refined when the existence of energy levels and sub-levels was recognised.
- 1 (a) Complete the following table for the particles in the nucleus.

Particle	Relative charge	Relative mass
proton		
neutron		

(2 marks)

1	(b)	State	te the block in the Periodic Table to which the element tungsten, W, belo	ngs.
				(1 mark)
1	(c)	Isoto	topes of tungsten include ¹⁸² W and ¹⁸⁶ W	
1	(c)	(i)	Deduce the number of protons in ¹⁸² W	
				(1 mark)
1	(c)	(ii)	Deduce the number of neutrons in ¹⁸⁶ W	
				(1 mark)

1	(d)	In order to detect the isotopes of tungsten using a mass spectrometer, a sample containing the isotopes must be vaporised and then ionised.						
1	(d)	(i)	Give two reasons why the sample must be ionised.					
			1					
			2				(2 marks)	
1	(d)	(ii)	ii) State what can be adjusted in the mass spectrometer to enable ions formed by the different isotopes to be directed onto the detector.					
							(1 mark)	
1	(e)	State 182W	e and explain the difference and ¹⁸⁶ W	ence, if any, be	tween the chem	nical properties of	of the isotopes	
		Diffe	erence					
		Expl	anation		•••••			
		•••••					(2 marks)	
1	(f)		table below gives the reple of tungsten.	elative abundar	nce of each isot	ope in the mass	spectrum of a	
		m/z	,	182	183	184	186	
		Rel	ative abundance/%	26.4	14.3	30.7	28.6	
		Use the data above to calculate a value for the relative atomic mass of this sample of tungsten. Give your answer to 2 decimal places. (2 marks)						

Turn over ▶

12

		Н	С	N	O	
	Electronegativity	2.1	2.5	3.0	3.5	
2 (a)	State the meaning of the term	electroneg	ativity.			-
		•••••	•••••			•••••
		•••••	•••••	•••••		•••••
		•••••	•••••	•••••	•••••	(2 marks)
2 (b)	State the strongest type of inte	ermoleculai	force in the	e following	compounds	
	Methane (CH ₄)			•••••		
	Ammonia (NH ₃)		•••••		•••••	(2 marks)
2 (c)	Use the values in the table to arises between two molecules	-	_	est type of i	ntermolecu	lar force
			•••••		•••••	
			•••••		•••••	
		•••••	•••••	•••••	•••••	•••••
		•••••	•••••			(3 marks)
2 (d)	Phosphorus is in the same gro A molecule of PH ₃ reacts with Name the type of bond former formed.	n an H ⁺ ion	to form a P	$^{\circ}$ H ₄ ⁺ ion.		, ,
2 (d)	A molecule of PH ₃ reacts with Name the type of bond formed	n an H ⁺ ion d when PH	to form a P 3 reacts with	PH ₄ ⁺ ion. n H ⁺ and ex	plain how t	,
2 (d)	A molecule of PH ₃ reacts with Name the type of bond formed formed.	an H ⁺ ion d when PH	to form a P ₃ reacts with	PH ₄ ⁺ ion. n H ⁺ and ex	plain how t	his bond is
2 (d)	A molecule of PH ₃ reacts with Name the type of bond formed formed. Type of bond	an H ⁺ ion d when PH	to form a P ₃ reacts with	PH ₄ ⁺ ion. n H ⁺ and ex	plain how t	

2	(e)	Arsenic is in the same group as nitrogen. It forms the compound AsH ₃ Draw the shape of an AsH ₃ molecule, including any lone pairs of electrons. Name the shape made by its atoms.	
		Shape	
		Name of shape	
2	(f)	The boiling point of AsH ₃ is -62.5 °C and the boiling point of NH ₃ is -33.0 °C. Suggest why the boiling point of AsH ₃ is lower than that of NH ₃	
		(1 mark)	
2	(g)	Balance the following equation which shows how AsH ₃ can be made.	
		AsCl ₃ + NaBH ₄ \longrightarrow AsH ₃ + NaCl + BCl ₃ (1 mark)	

Turn over for the next question

3	Titanium(IV) oxide (TiO ₂ , $M_r = 79.9$) is used as a white pigment in some paints. The pigment can be made as shown in the following equation.				
			$TiCl_4(l) + 2H_2O(l) \longrightarrow TiO_2(s) + 4HCl(aq)$		
3	(a)	(i)	Calculate the percentage atom economy for the formation of ${\rm TiO_2}$		
				•••••	
			(2 m	arks)	
3	(a)	(ii)	In view of the low atom economy of this reaction, suggest how a company of maximise its profits without changing the reaction conditions or the product costs.		
				•••••	
			(1)	mark)	
3	(b)	In ar	n experiment 165 g of TiCl ₄ were added to an excess of water.		
3	(b)	(i)	Calculate the amount, in moles, of TiCl ₄ in 165 g.		
				•••••	
				•••••	
			(2 m	arks)	
3	(b)	(ii)	Calculate the maximum amount, in moles, of TiO ₂ which can be formed in t experiment.	his	
				•••••	
			(1)	 mark)	
3	(b)	(iii)	Calculate the maximum mass of TiO ₂ formed in this experiment.		
				•••••	
			(1)	 mark)	

8

3	(b)	(iv)	In this experiment only 63.0 g of TiO ₂ were produced. Calculate the percentage yield of TiO ₂
			(1 mark)
			(1 mark)

Turn over for the next question

4	This	quest	ion is about the elements in Period 3 from Na to P
4	(a)	(i)	Explain the meaning of the term first ionisation energy.
			(2 marks)
4	(a)	(ii)	State and explain the general trend in first ionisation energies for the elements Na to P
			Trend
			Explanation
			(3 marks)
4	(a)	(iii)	State which one of the elements from Na to P deviates from this general trend and explain why this occurs.
			Element
			Explanation
			(3 marks)
4	(b)		which one of the elements from Na to P has the highest melting point and explain answer.
		Elen	nent
		Expl	anation
			(3 marks)

5	A m	netal carbonate MCO ₃ reacts with hydrochloric acid as shown in the following equation.				
			$MCO_3 + 2HCl \longrightarrow MCl_2 + H_2O + CO_2$			
		_	sample of MCO ₃ reacted completely with 30.7 cm ³ of 0.424 mol dm ⁻³ ric acid.			
5	(a)	(i)	Calculate the amount, in moles, of HCl which reacted with 0.548 g MCO ₃			
			(1 mark)			
5	(a)	(ii)	Calculate the amount, in moles, of MCO ₃ in 0.548 g.			
			(1 mark)			
5	(a)	(iii)	Calculate the relative formula mass of MCO ₃			
			(1 mark)			
5	(b)		your answer from part (a) (iii) to deduce the relative atomic mass of metal M and est its identity.			
		(If y	ou have been unable to calculate a value for the relative formula mass of MCO ₃ should assume it to be 147.6 but this is not the correct answer.)			
		Rela	tive atomic mass			
		•••••				
		Iden	tity of M(2 marks)			
			(2 marks)			

5

SECTION B

	Answer Question 6 in the sp	paces provided on pages 10 to 15.						
6	6 Petrol contains saturated hydrocarbons. Some of the molecules in petrol have the molecular formula C ₈ H ₁₈ and are referred to as octanes. These octanes can be obtained from crude oil by fractional distillation and by cracking suitable heavier fractions.							
	Petrol burns completely in a plentiful supplin a car engine.	ply of air but can undergo incomplete combustion						
6	(a) State the meaning of both the words saturated hydrocarbon.	saturated and hydrocarbon as applied to the term						
	Name the homologous series to whi	ch C ₈ H ₁₈ belongs.						
•••••								
•••••								
•••••								
•••••								
•••••		(3 marks)						

6 (b) Outline the essential features of the fractional distillation of crude oil that enable the crude oil to be separated into fractions.
(4 marks)
Question 6 continues on the next page

6 (c)	C_8H_{18} is obtained by the catalytic cracking of suitable heavy fractions. State what is meant by the term <i>cracking</i> and name the catalyst used in catalytic cracking.
	Write an equation to show how one molecule of $C_{14}H_{30}$ is cracked to form one molecule of C_8H_{18} and one molecule of another hydrocarbon.
	Explain why oil companies need to crack 'suitable heavy fractions'.
•••••	
•••••	(4 marks)

6	(d)	Write an equation for the incomplete combustion of C_8H_{18} to form carbon monoxide and water only.
		A catalytic converter is used to remove carbon monoxide from the exhaust gases in a car. Identify a catalyst used in the catalytic converter.
		Write an equation to show how carbon monoxide is removed in a catalytic converter.
		State why the water produced in the exhaust gases may contribute to global warming.
	•••••	
	•••••	
•••••	•••••	
•••••	•••••	
	•••••	
	•••••	
•••••	•••••	
	•••••	(4 marks)
		(r metrics)
		Question 6 continues on the next page

6 (e)	When some petrol was accidentally contaminated in 2007, the sensors in the affected cars caused a decrease in the supply of petrol to the engine.
	Suggest the effect that the contaminated fuel would have on the performance of the cars.
	State how the oil company might have recognised the problem before the petrol was sold.
	(2 marks)

6 (f)	The molecular formula C_8H_{18} represents several structural isomers.												
	State what is meant by the term <i>structural isomers</i> .												
	Name the following structural isomer of C ₈ H ₁₈												
	$\begin{array}{c cccc} CH_3 & H & CH_3 \\ & & & \\ H_3C & -C & -C & -C & -CH_3 \end{array}$												
	$H_3C - C - C - C - CH_3$ $ $												
•••••													
•••••	(3 marks)												

END OF QUESTIONS

GCE Chemistry Data Sheet

Table 1Infrared absorption data

Bond	Wavenumber /cm ⁻¹
N-H (amines)	3300-3500
O-H (alcohols)	3230-3550
C-H	2850 - 3300
O-H (acids)	2500-3000
$C \equiv N$	2220 - 2260
C = O	1680 - 1750
C = C	1620 - 1680
C - O	1000 - 1300
C-C	750 – 1100

Table 2 ¹H n.m.r. chemical shift data

Type of proton	δ/ppm
ROH	0.5 - 5.0
RCH_3	0.7 - 1.2
RNH_2	1.0 - 4.5
R_2CH_2	1.2 - 1.4
R_3CH	1.4 - 1.6
R-C-C- 	2.1-2.6
R-O-C- H	3.1-3.9
RCH ₂ Cl or Br	3.1 - 4.2
$\begin{array}{ccc} R-C-O-C-\\ \parallel & \parallel \\ O & \mathbf{H} \end{array}$	3.7-4.1
Ŗ Ħ	
C = C	4.5 - 6.0
R-C H	9.0-10.0
R-C $O-H$	10.0-12.0

Table 3 ¹³C n.m.r. chemical shift data

Type of carbon	δ/ppm
$-\overset{ }{\mathbf{C}}-\overset{ }{\mathbf{C}}-$	5-40
$R - \stackrel{\mid}{C} - Cl$ or Br	10-70
$\begin{array}{c c} R-C-\overset{ }{C}-\\ 0 \end{array}$	20-50
$\mathbf{R} - \mathbf{C} - \mathbf{N}$	25-60
-C-O- alcohols, ethers or esters	50-90
$\mathbf{C} = \mathbf{C}$	90-150
$R-C \equiv N$	110-125
	110-160
R-C- esters or acids	160-185
R-C- aldehydes	190 – 220

The Periodic Table of the Elements

1	2											3	4	5	6	7	0
(1)	(2)			Key			1.0 H hydrogen					(13)	(14)	(15)	(16)	(17)	(18) 4.0 He helium 2
6.9 Li lithium	9.0 Be beryllium			ive atomic symbol name c (proton)			<u> </u>	I				10.8 B boron 5	12.0 C carbon 6	14.0 N nitrogen	16.0 O oxygen	19.0 F fluorine	20.2 Ne neon 10
23.0 Na sodium	24.3 Mg magnesium 12	(3)	(4)	<i>(</i> 5)	(6)	(7)	(8)	<i>(</i> 9)	(10)	(11)	(12)	27.0 Al aluminium	28.1 Si silicon 14	31.0 P phosphorus 15	32.1 S sulfur 16	35.5 CI chlorine 17	39.9 Ar argon 18
39.1 K	40.1 Ca	45.0 Sc	47.9 Ti	50.9 V	52.0 Cr	54.9 Mn	55.8 Fe	58.9 Co	58.7 Ni	63.5 Cu	65.4 Zn	69.7 Ga	72.6 Ge	74.9 As	79.0 Se	79.9 Br	83.8 Kr
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
85.5 Rb rubidium	87.6 Sr strontium	88.9 Y yttrium	91.2 Zr zirconium	92.9 Nb niobium	96.0 Mo molybdenum	[98] Tc technetium	101.1 Ru ruthenium	102.9 Rh rhodium	106.4 Pd palladium	107.9 Ag silver	112.4 Cd cadmium	114.8 In indium	118.7 Sn tin	121.8 Sb antimony	127.6 Te tellurium	126.9 iodine	131.3 Xe xenon
37 132.9 Cs caesium	38 137.3 Ba barium	39 138.9 La * lanthanum	40 178.5 Hf hafnium	41 180.9 Ta tantalum	42 183.8 W tungsten	43 186.2 Re rhenium	190.2 Os osmium	45 192.2 Ir iridium	46 195.1 Pt platinum	47 197.0 Au gold	200.6 Hg mercury	49 204.4 TI thallium	50 207.2 Pb lead	51 209.0 Bi bismuth	52 [209] Po polonium	53 [210] At astatine	54 [222] Rn radon
55 [223] Fr francium	56 [226] Ra radium	57 [227] Ac †	72 [267] Rf rutherfordium	73 [268] Db dubnium	74 [271] Sg seaborgium	75 [272] Bh bohrium	76 [270] Hs hassium	77 [276] Mt meitnerium	78 [281] Ds darmstadtium	79 [280] Rg roentgenium	80 81 82 83 84 85 86 Elements with atomic numbers 112-116 have been reported but not fully authenticated						
87	88	89	104	105	106	107	108	109	110	111			110111	any additerio	Caica		

^{*} **58 – 71** Lanthanides

† 90 - 103 Actinides

	140.1 Ce	140.9 Pr	144.2 Nd	[145] Pm	150.4 Sm	152.0 Eu	157.3 Gd	158.9 Tb	162.5 Dy	164.9 Ho	167.3 Er	168.9 Tm	173.1 Yb	175.0 Lu
	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	lutetium 71
	232.0 Th	231.0 Pa	238.0 U	[237] Np	[244] Pu	[243] Am	[247] Cm	[247] Bk	[251] Cf	[252] Es	[257] Fm	[258] Md	[259] No	[262] Lr
	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
L	90	91	92	93	94	95	96	97	98	99	100	101	102	103