| Centre Number | | | Candidate Number | | | |---------------------|--|--|------------------|--|--| | Surname | | | | | | | Other Names | | | | | | | Candidate Signature | | | | | | General Certificate of Education Advanced Subsidiary Examination January 2009 # Chemistry CHEM1 **Unit 1** Foundation Chemistry Friday 9 January 2009 1.30 pm to 2.45 pm | For this paper you must have: | | | | | | | |-------------------------------|--|--|--|--|--|--| | a calculator. | | | | | | | #### Time allowed • 1 hour 15 minutes #### Instructions - Use black ink or black ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions. - You must answer the questions in the spaces provided. **Answers written** in margins or on blank pages will not be marked. - All working must be shown. - Do all rough work in this book. Cross through any work that you do not want to be marked. - The Periodic Table/Data Sheet is provided as an insert. #### Information - The marks for questions are shown in brackets. - The maximum mark for this paper is 70. - Your answers to the questions in Section B should be written in continuous prose, where appropriate. - You will be marked on your ability to: - use good English - organise information clearly - use specialist vocabulary where appropriate. #### **Advice** You are advised to spend about 50 minutes on Section A and about 25 minutes on Section B. ### **SECTION A** Answer all questions in the spaces provided. - In 1913 Niels Bohr proposed a model of the atom with a central nucleus, made up of protons and neutrons, around which electrons moved in orbits. After further research, the model was refined when the existence of energy levels and sub-levels was recognised. - 1 (a) Complete the following table for the particles in the nucleus. | Particle | Relative charge | Relative mass | |----------|-----------------|---------------| | proton | | | | neutron | | | (2 marks) | 1 | (b) | State | te the block in the Periodic Table to which the element tungsten, W, belo | ngs. | |---|-----|-------|---|----------| | | | | | (1 mark) | | 1 | (c) | Isoto | topes of tungsten include ¹⁸² W and ¹⁸⁶ W | | | 1 | (c) | (i) | Deduce the number of protons in ¹⁸² W | | | | | | | (1 mark) | | 1 | (c) | (ii) | Deduce the number of neutrons in ¹⁸⁶ W | | | | | | | (1 mark) | | 1 | (d) | In order to detect the isotopes of tungsten using a mass spectrometer, a sample containing the isotopes must be vaporised and then ionised. | | | | | | | |---|-----|---|---|------------------|------------------|---------------------|-----------------|--| | 1 | (d) | (i) | Give two reasons why the sample must be ionised. | | | | | | | | | | 1 | | | | | | | | | | 2 | | | | (2 marks) | | | 1 | (d) | (ii) | ii) State what can be adjusted in the mass spectrometer to enable ions formed by the different isotopes to be directed onto the detector. | | | | | | | | | | | | | | (1 mark) | | | 1 | (e) | State
182W | e and explain the difference and ¹⁸⁶ W | ence, if any, be | tween the chem | nical properties of | of the isotopes | | | | | Diffe | erence | | | | | | | | | Expl | anation | | ••••• | | | | | | | ••••• | | | | | (2 marks) | | | 1 | (f) | | table below gives the reple of tungsten. | elative abundar | nce of each isot | ope in the mass | spectrum of a | | | | | m/z | , | 182 | 183 | 184 | 186 | | | | | Rel | ative abundance/% | 26.4 | 14.3 | 30.7 | 28.6 | | | | | Use the data above to calculate a value for the relative atomic mass of this sample of tungsten. Give your answer to 2 decimal places. (2 marks) | | | | | | | | | | | | | | | | | **Turn over** ▶ 12 | | | Н | С | N | O | | |--------------|---|--------------------------------------|--------------------------------------|--|-------------|-------------| | | Electronegativity | 2.1 | 2.5 | 3.0 | 3.5 | | | 2 (a) | State the meaning of the term | electroneg | ativity. | | | - | | | | ••••• | ••••• | | | ••••• | | | | ••••• | ••••• | ••••• | | ••••• | | | | ••••• | ••••• | ••••• | ••••• | (2 marks) | | 2 (b) | State the strongest type of inte | ermoleculai | force in the | e following | compounds | | | | Methane (CH ₄) | | | ••••• | | | | | Ammonia (NH ₃) | | ••••• | | ••••• | (2 marks) | | 2 (c) | Use the values in the table to arises between two molecules | - | _ | est type of i | ntermolecu | lar force | | | | | | | | | | | | | ••••• | | ••••• | | | | | | ••••• | | ••••• | | | | | ••••• | ••••• | ••••• | ••••• | ••••• | | | | | | | | | | | | ••••• | ••••• | | | (3 marks) | | 2 (d) | Phosphorus is in the same gro
A molecule of PH ₃ reacts with
Name the type of bond former
formed. | n an H ⁺ ion | to form a P | $^{\circ}$ H ₄ ⁺ ion. | | , , | | 2 (d) | A molecule of PH ₃ reacts with Name the type of bond formed | n an H ⁺ ion
d when PH | to form a P 3 reacts with | PH ₄ ⁺ ion.
n H ⁺ and ex | plain how t | , | | 2 (d) | A molecule of PH ₃ reacts with Name the type of bond formed formed. | an H ⁺ ion
d when PH | to form a P ₃ reacts with | PH ₄ ⁺ ion.
n H ⁺ and ex | plain how t | his bond is | | 2 (d) | A molecule of PH ₃ reacts with Name the type of bond formed formed. Type of bond | an H ⁺ ion
d when PH | to form a P ₃ reacts with | PH ₄ ⁺ ion.
n H ⁺ and ex | plain how t | | | 2 | (e) | Arsenic is in the same group as nitrogen. It forms the compound AsH ₃ Draw the shape of an AsH ₃ molecule, including any lone pairs of electrons. Name the shape made by its atoms. | | |---|-----|---|--| | | | Shape | Name of shape | | | 2 | (f) | The boiling point of AsH ₃ is -62.5 °C and the boiling point of NH ₃ is -33.0 °C. Suggest why the boiling point of AsH ₃ is lower than that of NH ₃ | | | | | | | | | | | | | | | (1 mark) | | | 2 | (g) | Balance the following equation which shows how AsH ₃ can be made. | | | | | AsCl ₃ + NaBH ₄ \longrightarrow AsH ₃ + NaCl + BCl ₃ (1 mark) | | | | | | | Turn over for the next question | 3 | Titanium(IV) oxide (TiO ₂ , $M_r = 79.9$) is used as a white pigment in some paints. The pigment can be made as shown in the following equation. | | | | | |---|--|-------|--|-----------|--| | | | | $TiCl_4(l) + 2H_2O(l) \longrightarrow TiO_2(s) + 4HCl(aq)$ | | | | 3 | (a) | (i) | Calculate the percentage atom economy for the formation of ${\rm TiO_2}$ | | | | | | | | ••••• | | | | | | | | | | | | | (2 m | arks) | | | 3 | (a) | (ii) | In view of the low atom economy of this reaction, suggest how a company of maximise its profits without changing the reaction conditions or the product costs. | | | | | | | | ••••• | | | | | | (1) | mark) | | | 3 | (b) | In ar | n experiment 165 g of TiCl ₄ were added to an excess of water. | | | | 3 | (b) | (i) | Calculate the amount, in moles, of TiCl ₄ in 165 g. | | | | | | | | ••••• | | | | | | | ••••• | | | | | | (2 m | arks) | | | 3 | (b) | (ii) | Calculate the maximum amount, in moles, of TiO ₂ which can be formed in t experiment. | his | | | | | | | ••••• | | | | | | (1) |
mark) | | | 3 | (b) | (iii) | Calculate the maximum mass of TiO ₂ formed in this experiment. | | | | | | | | ••••• | | | | | | (1) |
mark) | | | | | | | | | 8 | 3 | (b) | (iv) | In this experiment only 63.0 g of TiO ₂ were produced. Calculate the percentage yield of TiO ₂ | |---|-----|------|--| | | | | | | | | | | | | | | (1 mark) | | | | | (1 mark) | | | | | | Turn over for the next question | 4 | This | quest | ion is about the elements in Period 3 from Na to P | |---|------|-------|--| | 4 | (a) | (i) | Explain the meaning of the term first ionisation energy. | | | | | | | | | | | | | | | (2 marks) | | 4 | (a) | (ii) | State and explain the general trend in first ionisation energies for the elements Na to P | | | | | Trend | | | | | Explanation | | | | | | | | | | (3 marks) | | 4 | (a) | (iii) | State which one of the elements from Na to P deviates from this general trend and explain why this occurs. | | | | | Element | | | | | Explanation | | | | | | | | | | (3 marks) | | 4 | (b) | | which one of the elements from Na to P has the highest melting point and explain answer. | | | | Elen | nent | | | | Expl | anation | | | | | | | | | | (3 marks) | | 5 | A m | netal carbonate MCO ₃ reacts with hydrochloric acid as shown in the following equation. | | | | | |---|-----|--|--|--|--|--| | | | | $MCO_3 + 2HCl \longrightarrow MCl_2 + H_2O + CO_2$ | | | | | | | _ | sample of MCO ₃ reacted completely with 30.7 cm ³ of 0.424 mol dm ⁻³ ric acid. | | | | | 5 | (a) | (i) | Calculate the amount, in moles, of HCl which reacted with 0.548 g MCO ₃ | | | | | | | | | | | | | | | | (1 mark) | | | | | 5 | (a) | (ii) | Calculate the amount, in moles, of MCO ₃ in 0.548 g. | | | | | | | | | | | | | | | | (1 mark) | | | | | 5 | (a) | (iii) | Calculate the relative formula mass of MCO ₃ | | | | | | | | | | | | | | | | (1 mark) | | | | | 5 | (b) | | your answer from part (a) (iii) to deduce the relative atomic mass of metal M and est its identity. | | | | | | | (If y | ou have been unable to calculate a value for the relative formula mass of MCO ₃ should assume it to be 147.6 but this is not the correct answer.) | | | | | | | Rela | tive atomic mass | | | | | | | ••••• | | | | | | | | | | | | | | | | Iden | tity of M(2 marks) | | | | | | | | (2 marks) | | | | 5 ### **SECTION B** | | Answer Question 6 in the sp | paces provided on pages 10 to 15. | | | | | | | |-------|---|--|--|--|--|--|--|--| | 6 | 6 Petrol contains saturated hydrocarbons. Some of the molecules in petrol have the molecular formula C ₈ H ₁₈ and are referred to as octanes. These octanes can be obtained from crude oil by fractional distillation and by cracking suitable heavier fractions. | | | | | | | | | | Petrol burns completely in a plentiful supplin a car engine. | ply of air but can undergo incomplete combustion | | | | | | | | 6 | (a) State the meaning of both the words saturated hydrocarbon. | saturated and hydrocarbon as applied to the term | | | | | | | | | Name the homologous series to whi | ch C ₈ H ₁₈ belongs. | | | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | ••••• | | | | | | | | | | ••••• | | | | | | | | | | ••••• | | | | | | | | | | ••••• | | (3 marks) | 6 (b) Outline the essential features of the fractional distillation of crude oil that enable the crude oil to be separated into fractions. | |---| | | | | | | | | | | | (4 marks) | | Question 6 continues on the next page | | | | | | | | | | | | | | | | | | 6 (c) | C_8H_{18} is obtained by the catalytic cracking of suitable heavy fractions. State what is meant by the term <i>cracking</i> and name the catalyst used in catalytic cracking. | |--------------|--| | | Write an equation to show how one molecule of $C_{14}H_{30}$ is cracked to form one molecule of C_8H_{18} and one molecule of another hydrocarbon. | | | Explain why oil companies need to crack 'suitable heavy fractions'. | | | | | | | | | | | | | | | | | ••••• | | | | | | ••••• | (4 marks) | 6 | (d) | Write an equation for the incomplete combustion of C_8H_{18} to form carbon monoxide and water only. | |-------|-------|---| | | | A catalytic converter is used to remove carbon monoxide from the exhaust gases in a car. Identify a catalyst used in the catalytic converter. | | | | Write an equation to show how carbon monoxide is removed in a catalytic converter. | | | | State why the water produced in the exhaust gases may contribute to global warming. | | | ••••• | | | | ••••• | | | ••••• | ••••• | | | ••••• | ••••• | | | | ••••• | | | | ••••• | | | ••••• | ••••• | | | | ••••• | (4 marks) | | | | (r metrics) | | | | | | | | Question 6 continues on the next page | 6 (e) | When some petrol was accidentally contaminated in 2007, the sensors in the affected cars caused a decrease in the supply of petrol to the engine. | |--------------|---| | | Suggest the effect that the contaminated fuel would have on the performance of the cars. | | | State how the oil company might have recognised the problem before the petrol was sold. | | | | | | | | | | | | (2 marks) | 6 (f) | The molecular formula C_8H_{18} represents several structural isomers. | | | | | | | | | | | | | |--------------|---|--|--|--|--|--|--|--|--|--|--|--|--| | | State what is meant by the term <i>structural isomers</i> . | | | | | | | | | | | | | | | Name the following structural isomer of C ₈ H ₁₈ | | | | | | | | | | | | | | | $\begin{array}{c cccc} CH_3 & H & CH_3 \\ & & & \\ H_3C & -C & -C & -C & -CH_3 \end{array}$ | | | | | | | | | | | | | | | $H_3C - C - C - C - CH_3$ $ $ | ••••• | ••••• | (3 marks) | | | | | | | | | | | | | END OF QUESTIONS ## **GCE Chemistry Data Sheet** **Table 1**Infrared absorption data | Bond | Wavenumber
/cm ⁻¹ | |-------------------|---------------------------------| | N-H (amines) | 3300-3500 | | O-H
(alcohols) | 3230-3550 | | C-H | 2850 - 3300 | | O-H (acids) | 2500-3000 | | $C \equiv N$ | 2220 - 2260 | | C = O | 1680 - 1750 | | C = C | 1620 - 1680 | | C - O | 1000 - 1300 | | C-C | 750 – 1100 | **Table 2** ¹H n.m.r. chemical shift data | Type of proton | δ/ppm | |---|-----------| | ROH | 0.5 - 5.0 | | RCH_3 | 0.7 - 1.2 | | RNH_2 | 1.0 - 4.5 | | R_2CH_2 | 1.2 - 1.4 | | R_3CH | 1.4 - 1.6 | | R-C-C-

 | 2.1-2.6 | | R-O-C-
H | 3.1-3.9 | | RCH ₂ Cl or Br | 3.1 - 4.2 | | $\begin{array}{ccc} R-C-O-C-\\ \parallel & \parallel \\ O & \mathbf{H} \end{array}$ | 3.7-4.1 | | Ŗ Ħ | | | C = C | 4.5 - 6.0 | | R-C H | 9.0-10.0 | | R-C $O-H$ | 10.0-12.0 | **Table 3** ¹³C n.m.r. chemical shift data | Type of carbon | δ/ppm | |--|-----------| | $-\overset{ }{\mathbf{C}}-\overset{ }{\mathbf{C}}-$ | 5-40 | | $R - \stackrel{\mid}{C} - Cl$ or Br | 10-70 | | $\begin{array}{c c} R-C-\overset{ }{C}-\\ 0 \end{array}$ | 20-50 | | $\mathbf{R} - \mathbf{C} - \mathbf{N}$ | 25-60 | | -C-O- alcohols, ethers or esters | 50-90 | | $\mathbf{C} = \mathbf{C}$ | 90-150 | | $R-C \equiv N$ | 110-125 | | | 110-160 | | R-C- esters or acids | 160-185 | | R-C- aldehydes | 190 – 220 | ### **The Periodic Table of the Elements** | 1 | 2 | | | | | | | | | | | 3 | 4 | 5 | 6 | 7 | 0 | |--------------------------------------|------------------------------------|---|---|--|--|-------------------------------------|-------------------------------------|--|--|---|---|--------------------------------------|----------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|---| | (1) | (2) | | | Key | | | 1.0
H
hydrogen | | | | | (13) | (14) | (15) | (16) | (17) | (18)
4.0
He
helium
2 | | 6.9
Li
lithium | 9.0
Be
beryllium | | | ive atomic
symbol
name
c (proton) | | | <u> </u> | I | | | | 10.8 B boron 5 | 12.0
C
carbon
6 | 14.0 N nitrogen | 16.0
O
oxygen | 19.0 F fluorine | 20.2
Ne
neon
10 | | 23.0 Na sodium | 24.3 Mg magnesium 12 | (3) | (4) | <i>(</i> 5) | (6) | (7) | (8) | <i>(</i> 9) | (10) | (11) | (12) | 27.0 Al aluminium | 28.1
Si
silicon
14 | 31.0 P phosphorus 15 | 32.1
S
sulfur
16 | 35.5
CI
chlorine
17 | 39.9
Ar
argon
18 | | 39.1
K | 40.1
Ca | 45.0
Sc | 47.9
Ti | 50.9
V | 52.0
Cr | 54.9
Mn | 55.8
Fe | 58.9
Co | 58.7
Ni | 63.5
Cu | 65.4
Zn | 69.7
Ga | 72.6
Ge | 74.9
As | 79.0
Se | 79.9
Br | 83.8
Kr | | potassium
19 | calcium
20 | scandium
21 | titanium
22 | vanadium
23 | chromium
24 | manganese
25 | iron
26 | cobalt
27 | nickel
28 | copper
29 | zinc
30 | gallium
31 | germanium
32 | arsenic
33 | selenium
34 | bromine
35 | krypton
36 | | 85.5
Rb
rubidium | 87.6
Sr
strontium | 88.9
Y
yttrium | 91.2
Zr
zirconium | 92.9
Nb
niobium | 96.0
Mo
molybdenum | [98] Tc technetium | 101.1
Ru
ruthenium | 102.9
Rh
rhodium | 106.4
Pd
palladium | 107.9
Ag
silver | 112.4
Cd
cadmium | 114.8
In
indium | 118.7
Sn
tin | 121.8 Sb antimony | 127.6
Te
tellurium | 126.9

 iodine | 131.3
Xe
xenon | | 37
132.9
Cs
caesium | 38
137.3
Ba
barium | 39
138.9
La *
lanthanum | 40
178.5
Hf
hafnium | 41
180.9
Ta
tantalum | 42
183.8
W
tungsten | 43
186.2
Re
rhenium | 190.2
Os
osmium | 45
192.2
Ir
iridium | 46
195.1
Pt
platinum | 47
197.0
Au
gold | 200.6
Hg
mercury | 49
204.4
TI
thallium | 50
207.2
Pb
lead | 51
209.0
Bi
bismuth | 52
[209]
Po
polonium | 53
[210]
At
astatine | 54
[222]
Rn
radon | | 55
[223]
Fr
francium | 56
[226]
Ra
radium | 57
[227]
Ac † | 72
[267]
Rf
rutherfordium | 73
[268]
Db
dubnium | 74
[271]
Sg
seaborgium | 75
[272]
Bh
bohrium | 76
[270]
Hs
hassium | 77
[276]
Mt
meitnerium | 78
[281]
Ds
darmstadtium | 79
[280]
Rg
roentgenium | 80 81 82 83 84 85 86 Elements with atomic numbers 112-116 have been reported but not fully authenticated | | | | | | | | 87 | 88 | 89 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | | | 110111 | any additerio | Caica | | | ^{*} **58 – 71** Lanthanides † 90 - 103 Actinides | | 140.1
Ce | 140.9
Pr | 144.2
Nd | [145]
Pm | 150.4
Sm | 152.0
Eu | 157.3
Gd | 158.9
Tb | 162.5
Dy | 164.9
Ho | 167.3
Er | 168.9
Tm | 173.1
Yb | 175.0
Lu | |---|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | | cerium
58 | praseodymium 59 | neodymium
60 | promethium
61 | samarium
62 | europium
63 | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | lutetium
71 | | | 232.0
Th | 231.0
Pa | 238.0
U | [237]
Np | [244]
Pu | [243]
Am | [247]
Cm | [247]
Bk | [251]
Cf | [252]
Es | [257]
Fm | [258]
Md | [259]
No | [262]
Lr | | | thorium | protactinium | uranium | neptunium | plutonium | americium | curium | berkelium | californium | einsteinium | fermium | mendelevium | nobelium | lawrencium | | L | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |