

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4729

Mechanics 2

MARK SCHEME

Specimen Paper

MAXIMUM MARK 72

(i)	Work done is $500\cos 15^{\circ} \times 400 \approx 193000 \text{J}$	M1 A1 A1	3	For attempt to use Force×distance For correct unsimplified product For correct answer 193 000
(ii)	Power applied is $\frac{193185}{600} \approx 322 \text{ W}$	M1 A1		For relevant use of $\frac{\text{work}}{\text{time}}$ or force×velocity For correct answer 322
(i)	CM is vertically above lowest point of base Hence $\tan \alpha = \frac{6}{7.5} \Rightarrow \alpha = 38.7^{\circ}$	B1 M1		For stating or implying correct geometry For appropriate trig calculation
(ii)	But $\frac{3}{4} < 0.8$, so $\theta < \alpha$	A1 B1 M1 A1	3	For stating or implying limiting friction case For comparing $\tan \alpha$ to $\tan \theta$, or equivalent For correct comparison of the angles
	Hence it slides first (at inclination 36.9°)	A1	4 7	For correct conclusion of sliding first
(i)	CG of triangle is $\frac{2}{3}a$ horizontally from A Moments: $\frac{1}{3}W \times \frac{2}{3}a + \frac{2}{3}W \times \frac{3}{2}a = W \times \overline{x}$ Hence $\overline{x} = \frac{11}{9}a$	B1 M1 A1 A1	4	For equating moments about <i>A</i> , or equivalent For a correct unsimplified equation Given answer correctly shown
(ii)	$R_A \times 2a = W \times \frac{7}{9} a \Rightarrow R_A = \frac{7}{18} W$ $R_A + R_D = W \Rightarrow R_D = \frac{11}{18} W$	M1 A1 M1 A1√	4	For one moments equation For one correct answer For resolving, or a second moments equation For a second correct answer
$21T_A$	$=13\times18.5+20\times8$	M1 A1 M1 A1√ A1√		For appropriate use of Pythagoras For both distances correct For any moments equation for the system For any one relevant term correct For a completely correct equation
	~	A1 A1	8	For resolving, or using another moments eqn For correct answer 19.1 For correct answer 13.9
(i)	Gain in KE is $\frac{1}{2} \times 80 \times 5^2 = 1000 \text{ J}$ Gain in PE is $80 \times 9.8 \times 4 = 3136 \text{ J}$	M1 M1 A1	3	For use of formula $\frac{1}{2}mv^2$ For use of formula mgh For both answers 1000 and 3136 correct
(ii)	8000 = 1000 + 3136 + 70d Hence distance <i>AB</i> is 55.2 m	M1 M1 A1	3	For equating work done to energy change For relevant use of force×distance For correct answer 55.2
(iii)	$\frac{720}{5} - 70 = 80a$	B1		For driving force $\frac{720}{5}$
	Hence acceleration is $0.925~\mathrm{m~s^{-2}}$	A1 A1	4	For use of Newton II with 3-term equation For a completely correct equation For correct answer 0.925
	(ii) (i) (ii) Hori: 21T _A + Hence (i)	(ii) Power applied is $\frac{193185}{600} \approx 322 \text{ W}$ (i) CM is vertically above lowest point of base Hence $\tan \alpha = \frac{6}{7.5} \Rightarrow \alpha = 38.7^{\circ}$ (ii) Cylinder slides when $\tan \theta = \frac{3}{4}$ But $\frac{3}{4} < 0.8$, so $\theta < \alpha$ Hence it slides first (at inclination 36.9°) (i) CG of triangle is $\frac{2}{3}a$ horizontally from A Moments: $\frac{1}{3}W \times \frac{2}{3}a + \frac{2}{3}W \times \frac{3}{2}a = W \times \overline{x}$ Hence $\overline{x} = \frac{11}{9}a$ (ii) $R_A \times 2a = W \times \frac{7}{9}a \Rightarrow R_A = \frac{7}{18}W$ $R_A + R_D = W \Rightarrow R_D = \frac{11}{18}W$ Horiz distances of B from A and C are S cm and S cm an	(ii) Power applied is $\frac{193185}{600} \approx 322 \text{ W}$ M1 A1 (i) CM is vertically above lowest point of base Hence $\tan \alpha = \frac{6}{7.5} \Rightarrow \alpha = 38.7^{\circ}$ M1 (ii) Cylinder slides when $\tan \theta = \frac{3}{4}$ B1 But $\frac{3}{4} < 0.8$, so $\theta < \alpha$ M1 Hence it slides first (at inclination 36.9°) A1 (i) CG of triangle is $\frac{2}{3}a$ horizontally from A Moments: $\frac{1}{3}W \times \frac{2}{3}a + \frac{2}{3}W \times \frac{3}{2}a = W \times \overline{x}$ M1 Hence $\overline{x} = \frac{11}{9}a$ A1 (ii) $R_A \times 2a = W \times \frac{7}{9}a \Rightarrow R_A = \frac{7}{18}W$ M1 $R_A + R_D = W \Rightarrow R_D = \frac{11}{18}W$ M1 Horiz distances of B from A and C are 5 cm and 16 cm M1 A1 A1 A1 A1 A1 A1 A1 A1 A1	(ii) Power applied is $\frac{193185}{600} \approx 322 \text{ W}$ M1 A1 A1 A2 [5] (i) CM is vertically above lowest point of base Hence $\tan \alpha = \frac{6}{7.5} \Rightarrow \alpha = 38.7^{\circ}$ M1 A1 B1 B1 B1 B1 B1 B1 B1 B1 B

6	(i)	$0 = (19\sin 11^\circ)^2 - 2gh$	M1		For use of relevant const acc equation for h
			B1		For correct vertical component 19sin11°
		Hence max height is $\frac{(19\sin 11^\circ)^2}{19.6} + 1.53 = 2.20 \text{ m}$	A1		For correct expression for $h \ (\approx 0.67)$
		17.0	A1	4	For correct answer 2.20
	(ii)	EITHER: Time to top point is $\frac{19\sin 11^{\circ}}{g} \approx 0.3699$	M1		For use of relevant const acc equation for $t_{\rm up}$
		Time to fall is $\sqrt{\frac{2 \times 2.20}{9.8}} \approx 0.6701$	M1		For use of relevant const acc eqn for t_{down}
			A1		For a correct expression for t_{down}
		Total time of flight is 1.04	A1		For correct value (or expression)
		Horiz dist is $19\cos 11^{\circ} \times 1.04 \approx 19.4 \text{ m}$	M1		For any use of $x = (19\cos 11^{\circ})t$
			A1		For correct answer 19.4 [Alternative approaches for the first four marks are equally acceptable; e.g. the use of $s = ut - \frac{1}{2}gt^2$ to find $t = 1.04$]
		OR: $-1.53 = x \tan 11^{\circ} - \frac{gx^2}{2 \times (19 \cos 11^{\circ})^2}$	M1		For relevant use of trajectory equation
		2/(1/00011/	B1		For $y = -1.53$ correctly substituted
			A1		For completely correct equation for <i>x</i>
		Hence $x = 19.4$	M1		For attempt to solve relevant quadratic
			A2	6	For correct answer 19.4
			_		
			1	10	
7	(i)	$T_1 \times \frac{7}{25} = 0.08g$	M1	10	For resolving vertically
7	(i)	$T_1 \times \frac{7}{25} = 0.08g$		10	, ,
7	(i)		M1 B1	10	For resolving vertically For $\frac{7}{25}$ or $\sin 16.3^{\circ}$ or equivalent For correct value 2.8
7	(i)	Hence tension in upper string is 2.8 N	M1 B1 A1	10	For $\frac{7}{25}$ or sin16.3° or equivalent For correct value 2.8
7	(i)		M1 B1	10	For $\frac{7}{25}$ or $\sin 16.3^{\circ}$ or equivalent
7	(i)	Hence tension in upper string is 2.8 N	M1 B1 A1	10	For $\frac{7}{25}$ or sin16.3° or equivalent For correct value 2.8
7	(i)	Hence tension in upper string is 2.8 N $T_1 \times \frac{24}{25} + T_2 = 0.08 \times \frac{10.5^2}{2.4}$	M1 B1 A1 M1 B1 A1		For $\frac{7}{25}$ or $\sin 16.3^{\circ}$ or equivalent For correct value 2.8 For correct use of Newton II horizontally For any use of $\frac{10.5^2}{2.4}$, or equivalent For correct horizontal equation
7	(i)	Hence tension in upper string is 2.8 N	M1 B1 A1 M1 B1		For $\frac{7}{25}$ or $\sin 16.3^{\circ}$ or equivalent For correct value 2.8 For correct use of Newton II horizontally For any use of $\frac{10.5^2}{2.4}$, or equivalent
7		Hence tension in upper string is 2.8 N $T_1 \times \frac{24}{25} + T_2 = 0.08 \times \frac{10.5^2}{2.4}$	M1 B1 A1 M1 B1 A1		For $\frac{7}{25}$ or $\sin 16.3^{\circ}$ or equivalent For correct value 2.8 For correct use of Newton II horizontally For any use of $\frac{10.5^2}{2.4}$, or equivalent For correct horizontal equation
7		Hence tension in upper string is 2.8 N $T_1 \times \frac{24}{25} + T_2 = 0.08 \times \frac{10.5^2}{2.4}$ Hence tension in horizontal string is 0.987 N $2.8 \times \frac{2.4}{2.5} = 0.08 \times \frac{v^2}{2.4}$	M1 B1 A1 M1 B1 A1 A1 A1		For $\frac{7}{25}$ or $\sin 16.3^{\circ}$ or equivalent For correct value 2.8 For correct use of Newton II horizontally For any use of $\frac{10.5^2}{2.4}$, or equivalent For correct horizontal equation For correct value 0.987 For new horizontal equation with $T_2 = 0$ For correct equation for v
7		Hence tension in upper string is 2.8 N $T_1 \times \frac{24}{25} + T_2 = 0.08 \times \frac{10.5^2}{2.4}$ Hence tension in horizontal string is 0.987 N	M1 B1 A1 M1 B1 A1 A1 A1 M1 A1 M1	7	For $\frac{7}{25}$ or $\sin 16.3^{\circ}$ or equivalent For correct value 2.8 For correct use of Newton II horizontally For any use of $\frac{10.5^2}{2.4}$, or equivalent For correct horizontal equation For correct value 0.987 For new horizontal equation with $T_2 = 0$ For correct equation for V For solving for V correctly
7		Hence tension in upper string is 2.8 N $T_1 \times \frac{24}{25} + T_2 = 0.08 \times \frac{10.5^2}{2.4}$ Hence tension in horizontal string is 0.987 N $2.8 \times \frac{2.4}{2.5} = 0.08 \times \frac{v^2}{2.4}$	M1 B1 A1 M1 B1 A1 A1 A1 A1 A1 A1	7	For $\frac{7}{25}$ or $\sin 16.3^{\circ}$ or equivalent For correct value 2.8 For correct use of Newton II horizontally For any use of $\frac{10.5^2}{2.4}$, or equivalent For correct horizontal equation For correct value 0.987 For new horizontal equation with $T_2 = 0$ For correct equation for v
7		Hence tension in upper string is 2.8 N $T_1 \times \frac{24}{25} + T_2 = 0.08 \times \frac{10.5^2}{2.4}$ Hence tension in horizontal string is 0.987 N $2.8 \times \frac{2.4}{2.5} = 0.08 \times \frac{v^2}{2.4}$	M1 B1 A1 M1 B1 A1 A1 A1 M1 A1 M1	7	For $\frac{7}{25}$ or $\sin 16.3^{\circ}$ or equivalent For correct value 2.8 For correct use of Newton II horizontally For any use of $\frac{10.5^2}{2.4}$, or equivalent For correct horizontal equation For correct value 0.987 For new horizontal equation with $T_2 = 0$ For correct equation for V For solving for V correctly
7		Hence tension in upper string is 2.8 N $T_1 \times \frac{24}{25} + T_2 = 0.08 \times \frac{10.5^2}{2.4}$ Hence tension in horizontal string is 0.987 N $2.8 \times \frac{2.4}{2.5} = 0.08 \times \frac{v^2}{2.4}$	M1 B1 A1 M1 B1 A1 A1 A1 M1 A1 M1	7	For $\frac{7}{25}$ or $\sin 16.3^{\circ}$ or equivalent For correct value 2.8 For correct use of Newton II horizontally For any use of $\frac{10.5^2}{2.4}$, or equivalent For correct horizontal equation For correct value 0.987 For new horizontal equation with $T_2 = 0$ For correct equation for V For solving for V correctly
7		Hence tension in upper string is 2.8 N $T_1 \times \frac{24}{25} + T_2 = 0.08 \times \frac{10.5^2}{2.4}$ Hence tension in horizontal string is 0.987 N $2.8 \times \frac{2.4}{2.5} = 0.08 \times \frac{v^2}{2.4}$	M1 B1 A1 M1 B1 A1 A1 A1 A1 A1 A1 A1 A1	7	For $\frac{7}{25}$ or $\sin 16.3^{\circ}$ or equivalent For correct value 2.8 For correct use of Newton II horizontally For any use of $\frac{10.5^2}{2.4}$, or equivalent For correct horizontal equation For correct value 0.987 For new horizontal equation with $T_2 = 0$ For correct equation for V For solving for V correctly
7		Hence tension in upper string is 2.8 N $T_1 \times \frac{24}{25} + T_2 = 0.08 \times \frac{10.5^2}{2.4}$ Hence tension in horizontal string is 0.987 N $2.8 \times \frac{2.4}{2.5} = 0.08 \times \frac{v^2}{2.4}$	M1 B1 A1 M1 B1 A1 A1 A1 A1 A1 A1 A1 A1	7	For $\frac{7}{25}$ or $\sin 16.3^{\circ}$ or equivalent For correct value 2.8 For correct use of Newton II horizontally For any use of $\frac{10.5^2}{2.4}$, or equivalent For correct horizontal equation For correct value 0.987 For new horizontal equation with $T_2 = 0$ For correct equation for V For solving for V correctly
7		Hence tension in upper string is 2.8 N $T_1 \times \frac{24}{25} + T_2 = 0.08 \times \frac{10.5^2}{2.4}$ Hence tension in horizontal string is 0.987 N $2.8 \times \frac{2.4}{2.5} = 0.08 \times \frac{v^2}{2.4}$	M1 B1 A1 M1 B1 A1 A1 A1 A1 A1 A1 A1 A1	7	For $\frac{7}{25}$ or $\sin 16.3^{\circ}$ or equivalent For correct value 2.8 For correct use of Newton II horizontally For any use of $\frac{10.5^2}{2.4}$, or equivalent For correct horizontal equation For correct value 0.987 For new horizontal equation with $T_2 = 0$ For correct equation for V For solving for V correctly
7		Hence tension in upper string is 2.8 N $T_1 \times \frac{24}{25} + T_2 = 0.08 \times \frac{10.5^2}{2.4}$ Hence tension in horizontal string is 0.987 N $2.8 \times \frac{2.4}{2.5} = 0.08 \times \frac{v^2}{2.4}$	M1 B1 A1 M1 B1 A1 A1 A1 A1 A1 A1 A1 A1	7	For $\frac{7}{25}$ or $\sin 16.3^{\circ}$ or equivalent For correct value 2.8 For correct use of Newton II horizontally For any use of $\frac{10.5^2}{2.4}$, or equivalent For correct horizontal equation For correct value 0.987 For new horizontal equation with $T_2 = 0$ For correct equation for V For solving for V correctly
7		Hence tension in upper string is 2.8 N $T_1 \times \frac{24}{25} + T_2 = 0.08 \times \frac{10.5^2}{2.4}$ Hence tension in horizontal string is 0.987 N $2.8 \times \frac{2.4}{2.5} = 0.08 \times \frac{v^2}{2.4}$	M1 B1 A1 M1 B1 A1 A1 A1 A1 A1 A1 A1 A1	7	For $\frac{7}{25}$ or $\sin 16.3^{\circ}$ or equivalent For correct value 2.8 For correct use of Newton II horizontally For any use of $\frac{10.5^2}{2.4}$, or equivalent For correct horizontal equation For correct value 0.987 For new horizontal equation with $T_2 = 0$ For correct equation for V For solving for V correctly

4729 Specimen Paper [Turn over

(i)	Change of momentum of A is 0.24×2	M1 A1		For considering momentum of <i>A</i> For correct expression for change in mom
	Hence magnitude of impulse is 0.48 N s	A1	3	For correct answer 0.48
(ii)	$mv_B = 0.48$	M1		For considering momentum of B
	$v_B \geqslant 6$	M1		For using the inequality $v_B \geqslant v_A$
	Hence $m \le \frac{0.48}{6} = 0.08$	A1	3	For showing given answer correctly
(iii)	$m = 0.06 \Rightarrow v_B = 8$	B1		For correct speed of B
	Hence $8-6 = e(8-0)$	M1		For correct use of Newton's law
	i.e. $e = \frac{1}{4}$	A1	3	For correct answer $\frac{1}{4}$ or equivalent
(iv)	$0.24 \times 4 - 0.06 \times 4 = 0.24a + 0.06b$ $b - a = \frac{1}{4}(4+4)$	B1 B1√		For a correct momentum equation For a correct restitution equation
	Hence speeds of A and B are 2 m s^{-1} and 4 m s^{-1}	M1		For solution of relevant simultaneous equasi
	Thence speeds of A and B are 2 ms and 4 ms	A1	4	For both answers correct
			_	
			13	
			13	