A-LEVEL

Mathematics

MM2B - Mechanics 2B
Mark scheme

6360
June 2016

Version 1.0 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Do not allow Mis-Reads in this question.

Do not allow Mis-Reads in this question.

Do not allow Mis-Reads in this question.				
Q	Solution	Mark	Total	Comment
2 (a)	$\mathbf{a}=\left(8-4 t^{3}\right) \mathbf{i}-18 e^{-3 t} \mathbf{j}$	M1A1	2	M1: Either term correct. A1: Correct acceleration. CAO.
(b) (i)	$\mathbf{F}=2 \mathbf{a}$	M1	2	M1: $2 \times$ acceleration from (a) provided it is a vector. A1: Correct F. CAO
	$=\left(16-8 t^{3}\right) \mathbf{i}-36 e^{-3 t} \mathbf{j}$	A1		
(ii)	$\begin{aligned} & \text { When } t=1 \text {, } \\ & \mathbf{F}=8 \mathbf{i}-36 e^{-3} \mathbf{j} \end{aligned}$			M1: Substituting $t=1$ into their expression for \mathbf{F}, must be a vector. m 1 : Finding the magnitude of their \mathbf{F}, must square, add and square root.
	$\mathbf{F}=8 \mathbf{i}-36 e^{-3} \mathbf{j}$ Magnitude is $\sqrt{ }\left(64+\left[36 e^{-3}\right]^{2}\right)$	M1 m1		
	$\begin{aligned} & =8.1983 . . \\ & =8.20 \mathrm{~N} \end{aligned}$	A1	3	A1: Correct magnitude. CAO. Condone 8.2 if 8.198..seen
(c)	When \mathbf{F} acts due south, east component is zero			
	$\begin{aligned} & 16-8 t^{3}=0 \\ & t=\sqrt[3]{2} \\ & =1.26 \end{aligned}$	M1		M1: Setting i component equal to zero
		A1	2	A1: Correct time. CAO. Accept $\sqrt[3]{2}$ or 1.259..
(d)	$\mathbf{r}=\left(4 t^{2}-\frac{1}{5} t^{5}\right) \mathbf{i}-2 e^{-3 t} \mathbf{j}+\mathbf{c}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		M1: One component correct. Condone missing c. A1: Both components correct, condone missing \mathbf{c}.
	$\begin{aligned} & \text { When } \mathrm{t}=0, \mathbf{r}=3 \mathbf{i}-5 \mathbf{j} \text {, } \\ & \therefore \mathbf{c}=3 \mathbf{i}-3 \mathbf{j} \\ & \therefore \mathbf{r}=\left(4 t^{2}-\frac{1}{5} t^{5}+3\right) \mathbf{i}-\left(3+2 e^{-3 t}\right) \mathbf{j} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { A1 } \end{aligned}$	4	B1: Correct constant. CAO. A1: Correct position vector and must be in the form $\mathrm{ai}+\mathrm{bj}$. CAO.
	Total		13	

Do not allow Mis-Reads in this question.

Q	Solution	Mark	Total	Comment
3 (a)	Symmetry	E1	1	
(b)	Moments about $A F$ $400 \times 10+150 \times 12.5+400 \times 10=950 d$	$\begin{gathered} \text { M1 } \\ \text { M1A1 } \end{gathered}$		M1: For $950 \times$ distance of centre of mass (eg d or \bar{x}). M1: Any two correct terms on LHS. (OE) A1: Correct equation.
	$\begin{aligned} & 9875=950 d \\ & d=10.39 \quad \text { [or } 10.39 \ldots] \\ & =10.4 \mathrm{~cm} \end{aligned}$	A1	4	A1: Correct distance to 3sf. Condone 0.104 metres or 104 mm . Do not accept $\frac{395}{38}$
(c)	If θ is the angle required $\tan \theta=\frac{10.39}{35}$	$\begin{gathered} \text { M1ft } \\ \text { A1ft } \end{gathered}$		M1 ft: Seeing $\tan \theta=\frac{10.39}{35}$ or $\tan \theta=\frac{35}{10.39}$ [allow their 10.39] $\mathrm{A} 1 \mathrm{ft}:$ Correct expression for $\tan \theta$.
	$\begin{aligned} \theta & =16.541 . . \\ & =16.5^{\circ} \end{aligned}$	A1	3	A1: Correct angle to 3 or more sf. Condone use of 10.4 giving 16.5489 SC2 for 73.5°.
(d)	When it has been assumed that the centre of mass of each of the rectangles used is at its centre.	E1	1	Or Relating area to mass [do not accept mass distributed evenly]
	Total		9	

Do not allow Mis-Reads in this question.

Do not allow Mis-Reads in this question.

Do not allow Mis-Reads in this question.

Q	Solution	Mark	Total	Comment
6 (a)	$\begin{aligned} & \text { Using } F=m a, \\ & m \frac{d v}{d t}=m g-\lambda m v \end{aligned}$	M1	2	M1: Correct terms with any signs. Must see m in every term.
	$\therefore \frac{d v}{d t}=g-\lambda v \quad \quad \mathbf{G G}$	A1		A1: Correct result from correct working.
(b)	$\begin{aligned} & \int \frac{d v}{g-\lambda v}=\int d t \\ & -\frac{1}{\lambda} \ln (g-\lambda v)=t+c \end{aligned}$	M1 M1A1		M1: Correct separation of variables and forming two correct integrals. M1: Either integration correct. A1: Both integrations correct with $+c$.
	When $t=0, v=u$ $\Rightarrow \mathrm{c}=-\frac{1}{\lambda} \ln (g-\lambda u)$	A1		A1: Correct constant. OE.
	$\begin{aligned} & \ln (g-\lambda v)=-\lambda t+\ln (g-\lambda u) \\ & \frac{g-\lambda v}{g-\lambda u}=e^{-\lambda t} \end{aligned}$	m1		m 1 : Correctly eliminating \ln.
	$\begin{gathered} g-\lambda v=(g-\lambda u) e^{-\lambda t} \\ v=\frac{1}{\lambda}\left(g-[g-\lambda u] e^{-\lambda t}\right) \end{gathered}$	A1	6	A1: Correct expression for v. OE
	Total		8	

Do not allow Mis-Reads in this question.

(b)	OR Moments about the centre: $R l \cos \theta=S l \sin \theta+2 \mu R l \sin \theta+\mu S l \cos \theta$ $S=2 \mu R$ $\begin{aligned} & R \cos \theta=2 \mu R \sin \theta+2 \mu R \sin \theta+2 \mu^{2} R \cos \theta \\ & \cos \theta=4 \mu \sin \theta+2 \mu^{2} \cos \theta \\ & 4 \mu \sin \theta=\left(1-2 \mu^{2}\right) \cos \theta \\ & \tan \theta=\frac{1-2 \mu^{2}}{4 \mu} \end{aligned}$	(M1) (A1) (A1) (B1) (M1) (m1) (A1)	(7)	M1: Moments about centre with four terms at least two terms correct. Friction forces do not need to contain μ, eg F_{A}. Condone [cancelling l] $R \cos \theta=S \sin \theta+2 \mu R \sin \theta+\mu S \cos \theta$ A1: Moment equation with correct terms but allow sign errors. A1: Correct moment equation about the centre. B1: Resolve horizontally correctly M1: Substituting for S [or for R] m 1 : Eliminating R [or S. A1: Correct answer.
	Total		9	

Do not allow Mis-Reads in this question.

If x is taken as distance from Q equation becomes
$\sqrt{3} g(x-4)+\frac{120(9-x)^{2}}{2 \times 6}+\frac{160(x-4)^{2}}{2 \times 4}=5 g \sin 30(x-4)+250$ Leads directly to $30 x^{2}-347.53 x+910.12=0$ and hence 7.58

If x is taken as distance from P equation becomes
$\sqrt{3} g(11-x)+\frac{120(x-6)^{2}}{2 \times 6}+\frac{160(11-x)^{2}}{2 \times 4}=5 g \sin 30(11-x)+250$
Leading to $30 x^{2}-552.47 x+2447.17=0$ and hence 7.42 . Thus distance from Q is 7.58

