

Monday 7 January 2019

Mathematics A

```
Level 1/2
Paper 1H
Higher Tier
```

```
You must have: pen, HB pencil, eraser, calculator. Tracing paper may be used.
You must have:


\section*{Instructions}
- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators may be used.
- You must NOT write anything on the formulae page. Anything you write on the formulae page will gain NO credit.

\section*{Information}
- The total mark for this paper is 100.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

\section*{Advice}
- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over


Pearson

\section*{International GCSE Mathematics}

Formulae sheet - Higher Tier
\begin{tabular}{|c|c|}
\hline Arithmetic series Sum to \(n\) terms, \(S_{n}=\frac{n}{2}[2 a+(n-1) d]\) & Area of trapezium \(=\frac{1}{2}(a+b) h\) \\
\hline \begin{tabular}{l}
The quadratic equation \\
The solutions of \(a x^{2}+b x+c=0\) where \(a \neq 0\) are given by:
\[
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\]
\end{tabular} &  \\
\hline Trigonometry & \begin{tabular}{l}
In any triangle \(A B C\) \\
Sine Rule \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\) \\
Cosine Rule \(a^{2}=b^{2}+c^{2}-2 b c \cos A\) \\
Area of triangle \(=\frac{1}{2} a b \sin C\)
\end{tabular} \\
\hline \begin{tabular}{l}
Volume of cone \(=\frac{1}{3} \pi r^{2} h\) \\
Curved surface area of cone \(=\pi r l\)
\end{tabular} & Volume of prism
\[
=\text { area of cross section } \times \text { length }
\] \\
\hline Volume of cylinder \(=\pi r^{2} h\) Curved surface area of cylinder \(=2 \pi r h\) & \begin{tabular}{l}
Volume of sphere \(=\frac{4}{3} \pi r^{3}\) \\
Surface area of sphere \(=4 \pi r^{2}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Answer ALL TWENTY ONE questions.}

Write your answers in the spaces provided.
You must write down all the stages in your working.
1 (a) Factorise fully \(4 p+6 p q\)
(b) Expand and simplify \((e+3)(e-5)\)
(c) Solve \(y=\frac{2 y+1}{5}\)

Show clear algebraic working.
\[
\begin{equation*}
y= \tag{3}
\end{equation*}
\]

2

(a) Describe fully the single transformation that maps triangle \(\mathbf{A}\) onto triangle \(\mathbf{B}\).
(b) On the grid, translate triangle \(\mathbf{A}\) by the vector \(\binom{2}{-5}\) Label the new triangle \(\mathbf{C}\).
(c) On the grid, enlarge triangle \(\mathbf{D}\) with scale factor \(\frac{1}{2}\) and centre \((-4,2)\)
(Total for Question 2 is \(\mathbf{6}\) marks)


3 Here is a biased 5-sided spinner.


When the spinner is spun, it can land on red, blue, green, brown or yellow.
The table gives the probabilities that the spinner lands on red or on blue or on green.
\begin{tabular}{|l|c|c|c|c|c|}
\hline Colour & red & blue & green & brown & yellow \\
\hline Probability & 0.15 & 0.26 & 0.33 & & \\
\hline
\end{tabular}

When the spinner is spun once, the probability that the spinner lands on brown is 0.06 more than the probability that the spinner lands on yellow.

Jenine spins the spinner 150 times.
Work out an estimate for the number of times the spinner lands on yellow.

4 The table gives information about the price of gold.
\begin{tabular}{|c|c|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & 1st February 2016 & 1st March 2016 \\
\hline \begin{tabular}{c} 
Price of one ounce of \\
gold (dollars)
\end{tabular} & 1126.50 & 1236.50 \\
\hline
\end{tabular}
(a) Work out the percentage increase in the price of gold between 1st February 2016 and 1st March 2016
Give your answer correct to 3 significant figures.

The price of one ounce of gold on 1st February 2016 was 1126.50 dollars.
The price of gold increased by \(19 \%\) from 1st February 2016 to 1st July 2016
(b) Work out the price of one ounce of gold on 1st July 2016

Give your answer correct to the nearest dollar.
dollars
(3)
(Total for Question 4 is \(\mathbf{6}\) marks)

5

\(B C D\) and \(A F E\) are straight lines.
Show that \(B C D\) is parallel to \(A F E\).
Give reasons for your working.

6 (a) Complete the table of values for \(y=x^{2}-5 x+6\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\(y\) & 6 & & 0 & 0 & 2 & \\
\hline
\end{tabular}
(1)
(b) On the grid, draw the graph of \(y=x^{2}-5 x+6\) for \(0 \leqslant x \leqslant 5\)

(c) By drawing a suitable straight line on the grid, find estimates for the solutions of the equation
\[
x^{2}-5 x=x-7
\]

7 The table shows the volumes, in \(\mathrm{km}^{3}\), of four oceans.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Ocean } & Volume (km \(\left.{ }^{\mathbf{3}}\right)\) \\
\hline Arctic Ocean & \(1.88 \times 10^{7}\) \\
\hline Atlantic Ocean & \(3.10 \times 10^{8}\) \\
\hline Indian Ocean & \(2.64 \times 10^{8}\) \\
\hline Southern Ocean & \(7.18 \times 10^{7}\) \\
\hline
\end{tabular}
(a) Write \(7.18 \times 10^{7}\) as an ordinary number.
(b) Calculate the total volume of these four oceans.

The volume of the South China Sea is \(9880000 \mathrm{~km}^{3}\)
(c) Write 9880000 in standard form.

8 The diagram shows an isosceles triangle.


Diagram NOT accurately drawn

The area of the triangle is \(12 \mathrm{~cm}^{2}\)
Work out the perimeter of the triangle.
Give your answer correct to 3 significant figures.

9 The table shows information about the speeds of 60 cycles.
\begin{tabular}{|c|c|}
\hline Speed \((\boldsymbol{s} \mathbf{k m} / \mathbf{h})\) & Frequency \\
\hline \(0<s \leqslant 10\) & 3 \\
\hline \(10<s \leqslant 20\) & 16 \\
\hline \(20<s \leqslant 30\) & 24 \\
\hline \(30<s \leqslant 40\) & 10 \\
\hline \(40<s \leqslant 50\) & 5 \\
\hline \(50<s \leqslant 60\) & 2 \\
\hline
\end{tabular}
(a) Complete the cumulative frequency table.
\begin{tabular}{|c|c|}
\hline Speed ( \(\mathbf{s} \mathbf{~ k m} / \mathbf{h}\) ) & \begin{tabular}{c} 
Cumulative \\
frequency
\end{tabular} \\
\hline \(0<s \leqslant 10\) & \\
\hline \(0<s \leqslant 20\) & \\
\hline \(0<s \leqslant 30\) & \\
\hline \(0<s \leqslant 40\) & \\
\hline \(0<s \leqslant 50\) & \\
\hline \(0<s \leqslant 60\) & \\
\hline
\end{tabular}
(b) On the grid, draw a cumulative frequency graph for your table.

Cumulative
frequency

(2)
(c) Use your graph to find an estimate for the interquartile range of the speeds.
\(\mathrm{km} / \mathrm{h}\)
(2)
(Total for Question 9 is 5 marks)

10 Here is triangle \(A B D\).


The point \(C\) lies on \(B D\).
\(A D=13 \mathrm{~cm} \quad B C=8 \mathrm{~cm} \quad\) angle \(A D B=90^{\circ} \quad\) angle \(C A D=20^{\circ}\)
Calculate the size of angle \(B A C\).
Give your answer correct to 1 decimal place.

11 Express \(\frac{5}{3}-\frac{x+2}{2 x}\) as a single fraction in its simplest terms.

12 The curve \(C\) has equation \(y=\frac{1}{3} x^{3}-9 x+1\)
(a) Find \(\frac{\mathrm{d} y}{\mathrm{~d} x}\)
\[
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}= \tag{2}
\end{equation*}
\]
(b) Find the range of values of \(x\) for which \(C\) has a negative gradient.

13 All the students in Year 11 at a school must study at least one of Geography ( \(G\) ), History ( \(H\) ) and Religious Studies \((R)\).

In Year 11 there are 65 students.
Of these students
15 study Geography, History and Religious Studies
21 study Geography and History
16 study Geography and Religious Studies
30 study Geography
18 study only Religious Studies
37 study Religious Studies
(a) Using this information, complete the Venn diagram to show the number of students in each region of the Venn diagram.


A student in Year 11 who studies both History and Religious Studies is chosen at random.
(b) Work out the probability that this student does not study Geography.
\(14 T\) is directly proportional to the cube of \(r\)
\(T=21.76\) when \(r=4\)
(a) Find a formula for \(T\) in terms of \(r\)
(b) Work out the value of \(T\) when \(r=6\)

15 The total surface area of a solid hemisphere is equal to the curved surface area of a cylinder.
The radius of the hemisphere is \(r \mathrm{~cm}\).
The radius of the cylinder is twice the radius of the hemisphere.
Given that
volume of hemisphere : volume of cylinder \(=1: m\)
find the value of \(m\).
\(m=\)

16 (a) Rationalise the denominator of \(\frac{a+\sqrt{4 b}}{a-\sqrt{4 b}}\) where \(a\) is an integer and \(b\) is a prime number. Simplify your answer.
(b) Given that \(\left(\sqrt{\frac{y}{x}}\right)^{-5}=\frac{x^{m}}{y^{m}}\) where \(x \neq y\)
find the value of \(m\).
\[
m=
\]

17 Here is triangle \(A B C\).


Diagram NOT accurately drawn

Calculate the value of \(x\).
Give your answer correct to 3 significant figures.

18 The graph of \(y=\mathrm{f}(x)\) is shown on the grid.

(a) On the grid above, sketch the graph of \(y=\mathrm{f}\left(\frac{1}{2} x\right)\)

The graph of \(y=\mathrm{f}(x+k)\) is shown on the grid below.

(b) Write down the value of \(k\)

19 g is the function with domain \(x \geqslant-3\) such that \(\mathrm{g}(x)=x^{2}+6 x\)
(a) Write down the range of \(\mathrm{g}^{-1}\)
(b) Express the inverse function \(\mathrm{g}^{-1}\) in the form \(\mathrm{g}^{-1}: x \mapsto \ldots\)

20 A bowl contains \(n\) pieces of fruit.
Of these, 4 are oranges and the rest are apples.
Two pieces of fruit are going to be taken at random from the bowl.
The probability that the bowl will then contain \((n-6)\) apples is \(\frac{1}{3}\)
Work out the value of \(n\)
Show your working clearly.
\(21(2 x+23),(8 x+2)\) and \((20 x-52)\) are three consecutive terms of an arithmetic sequence.
Prove that the common difference of the sequence is 12
```

