OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced GCE

CHEMISTRY B (SALTERS)

Unit F335: Chemistry by Design
Specimen Mark Scheme
The maximum mark for this paper is 120.

Question Number	Answer	Max Mark
1(a)(i)	Air allow atmosphere	[1]
(ii)	$\begin{aligned} & M_{\mathrm{r}} \mathrm{NH}_{4} \mathrm{NO}_{3}=80(.0)(1) ; \\ & \%=28 \times 100 / 80=35(.0) \%(1) \end{aligned}$	[2]
(iii)	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	[1]
(iv)	Advantage: provide nutrients/ return nitrogen to soil/ make plants grow (1); Disadvantage: washed away/ eutrophication (AW)/ waste of resources	[2]
(b)(i)	$\left[\mathrm{H}_{2}\right] 3 \times[\mathrm{CO}] /\left[\mathrm{H}_{2} \mathrm{O}\right] \times\left[\mathrm{CH}_{4}\right]$ (2) award (1) if one error (except addition, scores zero)	[2]
(ii)	$292 \times 5 \times 5 / 1728=4.22(2)$ ecf from 1bi (unless addition); award (1) if one error; 3sf scores (1) independently, provided some correct calculation shown.	[3]
(c)(i)	higher yield (1); more molecules on right than left (1); equilibrium position moves in direction of higher pressure (AW) (1) NB firming up on equilibrium position	[3]
(ii)	(compromise) with rate (of setting up equilibrium)	[1]
(d)(i)	$\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2}$	[1]
(ii)	two from: toxic gas; can be burnt as a fuel; produces more hydrogen	[2]
(e)(i)	positive because more (gas) molecules on right (1)	[1]
(ii)	$393+198-189-186=+216$ (1) for products - reactants; (1) for 3×131;	
	(1) for sign with ecf from a calculation shown	[3]
(iii)	$-1784=+216-\Delta H / T$, thus $\Delta H=+1 \times 10^{6}\left(\mathrm{~J} \mathrm{~mol}^{-1}\right)(1)$ $\Delta S=+216-\Delta H$ value $1000=-784 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}(1)$	[2]
	Total	[24]

Question Number	Answer	Max Mark
(c)	electrons are excited/ move to higher energy levels (1); freqency absorbed depends on energy level gap/ (Δ) $\mathrm{E}=\mathrm{hv}$ (1) frequency/ energy of uv > visible (1); to be coloured must absorb in visible (1) QWC mark and one from: needs more delocalisation to absorb in visible (AW) (1) transmits/reflects complementary colour	[5]
(d)	two marks for any correct pair (mark for pollutant can be scored alone but NOT effect) aluminium (compounds); forms toxic waste; HCl ; toxic aluminium (compounds); wasted benzene; toxic/ carcinogenic	
(e)(i)	an ionic substance that has a low enough melting point to be a liquid at room temperature	[1]
(ii)	M_{r} values $\mathrm{C}_{6} \mathrm{H}_{6}=78$, benzophenone $=182(1)$; mass $=182 \times 10 / 78=23 / 23.3 \mathrm{~kg}$ (1)	[2]
(iii)	FW of all atoms utilised/FW of all atoms used (1) stated or implied $\%$ atom economy $=182 \times 100 /(140.5+78)=83(.3) \%(1)$	[2]
(iv)	catalyst/solvent recycled (1); no disposal of toxic products as with AICl_{3} (1) high atom economy (1); high percentage yield (1)	[4]
(v)		[3]
(f)(i)	$\mathrm{C}=\mathrm{O}$ at 1650/ C-H at 3000 (1)	[1]
		[2]
4(a)(i)	alcohol/ hydroxy(l); carboxylic acid	[2]
(ii)	4-hydroxy (1); butanoic acid (1)	[2]
(b)(i)	ester /lactone	[1]
(ii)	hydrolysis	[1]
(c)(i)	circle round all except $=0$	[1]

Question Number	Answer		Max Mark
(iii)			[1]
(iv)			[1]
		Total	[16]
		Paper Total	[120]

