

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY B (SALTERS)

F335 MS

Unit F335: Chemistry by Design

Specimen Mark Scheme

The maximum mark for this paper is **120**.

Question Number	Answer	Max Mark
1(a)(i)	Air allow atmosphere	[1]
(ii)	$M_{\rm r} \rm NH_4 \rm NO_3 = 80(.0)$ (1); % = 28 x 100/80 = 35(.0) % (1)	[2]
(iii)	(NH ₄) ₂ SO ₄	[1]
(iv)	Advantage: provide nutrients/ return nitrogen to soil/ make plants grow (1); Disadvantage: washed away/ eutrophication (AW)/ waste of resources	[2]
(b)(i)	$[H_2]3 \times [CO]/ [H_2O] \times [CH_4]$ (2) award (1) if one error (except addition, scores zero)	[2]
(ii)	292 x 5 x 5/1728 = 4.22 (2) ecf from 1bi (unless addition); award (1) if one error; 3sf scores (1) independently, provided some correct calculation shown.	[3]
(c)(i)	higher yield (1); more molecules on right than left (1); equilibrium position moves in direction of higher pressure (AW) (1) NB firming up on equilibrium position	[3]
(ii)	(compromise) with rate (of setting up equilibrium)	[1]
(d)(i)	$CO + H_2O \rightarrow CO_2 + H_2$	[1]
(ii)	two from:	
	toxic gas; can be burnt as a fuel; produces more hydrogen	[2]
(e)(i)	positive because more (gas) molecules on right (1)	[1]
(ii)	393 + 198 - 189 - 186 = +216	
	(1) for products – reactants; (1) for 3 x 131; (1) for sign with oof from a calculation shown	[2]
(iii)	$-1784 = +216 - \Delta H/T$ thus $\Delta H = +1 \times 10^6 (1 \text{ mol}^{-1})(1)$	[3]
(111)	$\Delta S = +216 - \Delta H value/1000 = -784 \text{ J K}^{-1} \text{ mol}^{-1}(1)$	[2]
	Total	[24]
	6	

Question Number	Answer	Max Mark
2(a)	(6) is the oxidation state/number of the chromium	[1]
2(a)	$Pb^{2+}(ar) + CrO^{2-}(ar) \rightarrow PbCrO_{2}(ar)$	ניז
(6)	(1) for correct equation	
	(1) for correct state symbols provided equation shows ions forming	
	compound or correct full equation for lead nitrate and sodium chromate.	[2]
(C)	C (1); it reflects in the yellow/ yellow light is in centre of spectrum/ around	
	600 nm (1)	[2]
(d)(i)	3d	[1]
(ii)	the (presence of the) ligands (at different orientations to the orbitals)	[1]
(e)(i)	iron(III) oxide <i>ignore gaps</i>	[1]
(ii)	diagram with minimum three levels, getting closer at higher energy (1); allow from diagram or written account: levels are electron energy levels (1);	
	electron falling emits light (1); \swarrow only award if in terms of energy levels frequency depends on gap between energy levels/ (Δ) $E = hv$ (1)	[4]
(iii)	Cd (1); cadmium(II) sulfide (1); <i>allow cadmium sulfide</i>	[2]
(f)(i)	$Pb^{2+}(g) + CrO_4^{2-}(g)$	
	-1000 $PbCrO_4(aq)/Pb^{2+}(aq) + CrO_4^{2-}(aq)$	
	PbCrO ₄ (s) +17	
	solution enthalpy above solid and correctly labelled (1);	
	top line in place and correctly labelled (1);	
	numbers in correct places (1)	[3]
(ii)	-983(1) sign assortial	[0] [1]
(iii)	broken: jonic (bonds) in lattice (1): hydrogen bonds in water (1):	[,]
()		
	made: ion-dipole bonds (1);	
	QWC - do not award mark for first spelling error in bond description	
	bonds broken stronger than bonds made (AW) (1)	[4]
	Total	[22]
3(a)(i)	-C=O	
		F4 3
/::>	U	[1]
(II) (b)	electrophilic (1), substitution (1) mark separately	[4]
(0)	properties: no/few addition reactions/ substitution reactions (1)	[2]

Question Number	Answer	Max Mark
(c)	<u>electrons</u> are excited/ move to higher energy levels (1); freqency absorbed depends on energy level <u>gap</u> / (Δ)E = hv (1) frequency/ energy of uv > visible (1); to be coloured must absorb in visible (1) \swarrow QWC mark and one from:	
	needs more delocalisation to absorb in visible (AW) (1) transmits/reflects complementary colour	[5]
(d)	two marks for any correct pair (<i>mark for pollutant can be scored alone but</i> <i>NOT effect</i>) aluminium (compounds); forms toxic waste; HCl; toxic aluminium (compounds); wasted benzene: toxic/ carcinogenic	
		[4]
(e)(i)	an ionic substance that has a low enough melting point to be a liquid at room temperature	[1]
(ii)	$M_{\rm r}$ values C ₆ H ₆ = 78, benzophenone = 182 (1); mass = 182 x 10/78 = 23/23 3 kg (1)	[2]
(iii)	FW of all atoms utilised/FW of all atoms used (1) stated or implied % atom economy = $182 \times 100/(140.5 + 78) = 83(.3) \%$ (1)	[2]
(iv)	catalyst/solvent recycled (1); no disposal of toxic products as with AICl ₃	
	(1) high atom economy (1): high percentage vield (1)	[4]
(v) (f)(i) (ii)	$\begin{array}{c} \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots &$	[3] [1]
(11)	all ten protons labelled in some way (1) correct letters (a,b,c in any order) (1) score (1) if on one ring only	
		[2]
4(a)(i)	alcohol/ hydroxy(I); carboxylic acid	[2]
(II) (b)(i)	4-nyuroxy (T), bulanoic aciu (T)	[2] [1]
(1)	hydrolysis	['] [1]
(c)(i)	circle round all except =O	[1]

Question Number	Answer	Max Mark
(ii)	–OH groups (1); hydrogen bond (1); indication that both molecules have same shape/ fit receptor site (1)	[3]
(d)(i)	computer modelling	[1]
(ii)	two from:	
	no suitable alternatives;	
	good sleeping pill – with reason, eg few side-effects;	
	more stringent controls on release of GHB;	
	beneficial uses outweigh problems (1)	[2]
(e)(i)	HA \implies H ⁺ + A ⁻ (allow reaction with water to produce H ₃ O ⁺)	[1]
(ii)	A^{-} is the conjugate base of HA (1); related by loss of proton (1)	[2]
(iii)	[H ⁺] x [A [−]]/ [HA]	[1]
(iv)	$[H^+] = 1.26 \times 10^{-3} \text{ mol dm}^{-3} \text{ stated or implied, units not essential (1);}$	
	[A]= [H] STATED OF IMPLIED (1); $K = (1.26 \times 10^{-3})^2 (10^{-1} - 1.50)(1.58)(1.6 \times 10^{-5})(1)$	
	$n_a = (1.20 \times 10^{-3})/10^{-1} = 1.59/1.50/1.0 \times 10^{-1}$ (1)	[4]
(v)	[HA] initial = [HA] at equilibrium (AW)/ [A ⁻]= [H ⁺]	[1]
(v) (f)	minimises/resists change in (allow maintains) pH/ pH stays approximately	r.1
(•)	constant(1)	
	when small amounts (1); of acid or alkali added (1);	
	need to maintain pH in body (1); e.g. for enzyme reactions/ blood (1)	[5]
(ii)	$[H^+] = K_a$ stated or implied (1);	
	pH = $-\log(1.59 \times 10^{-5}) = 4.8$ ignore sf (1);	[2]
5(a)(i)	C ₂₀ H ₂₈ O (1)	[1]
(ii)	-OH (1)	
	он correct arrangements of bonds (1)	
		[2]
<i>(</i> ji)	alkene	[1]
(b)(i)	acidified/named acid/H ⁺ (1): (potassium/sodium) dicromate/ $Cr_{2}O_{7}^{2-}$ (1):	L.1
(~)(')	<u>distil</u> (1)	[3]
(ii)	5	[1]
(c)(i)	idea of <i>cis</i> (1);	
	correct arrangement of bonds (1)	
		- <i>c</i> -
		[2]
(ii)	lack of free rotation in C=C bonds	[1]
(d)(i)		[1]
(íi)	nucleophilic (1); addition (1)	[2]

Question Number	Answer	Max Mark
(iii)	$R - C$ $H_2 N - opsin$	
	H	[1]
(iv)	OH H R-C-N- opsin	
	н н	[1]
	Total	[16]
	Paper Total	[120]