

F

Monday 19 May 2014 – Afternoon

GCSE TWENTY FIRST CENTURY SCIENCE PHYSICS A/SCIENCE A

A181/01 Modules P1 P2 P3 (Foundation Tier)

Candidates answer on the Question Paper. A calculator may be used for this paper.

OCR supplied materials:

None

Other materials required:

- Pencil
- Ruler (cm/mm)

Duration: 1 hour

Candidate forename				Candidate surname			
Centre numb	oer			Candidate nu	ımber		

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do **not** write in the bar codes.

INFORMATION FOR CANDIDATES

- The quality of written communication is assessed in questions marked with a pencil ().
- A list of physics equations is printed on page 2.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is **60**.
- This document consists of 20 pages. Any blank pages are indicated.

TWENTY FIRST CENTURY SCIENCE DATA SHEET

Useful relationships

The Earth in the Universe

Sustainable energy

energy transferred = power
$$\times$$
 time
power = voltage \times current
efficiency = $\frac{\text{energy usefully transferred}}{\text{total energy supplied}} \times 100\%$

Explaining motion

$$speed = \frac{distance\ travelled}{time\ taken}$$

$$acceleration = \frac{change\ in\ velocity}{time\ taken}$$

$$momentum = mass \times velocity$$

$$change\ of\ momentum = resultant\ force \times time\ for\ which\ it\ acts$$

$$work\ done\ by\ a\ force = force \times distance\ moved\ in\ the\ direction\ of\ the\ force$$

$$amount\ of\ energy\ transferred = work\ done$$

$$change\ in\ gravitational\ potential\ energy = weight \times vertical\ height\ difference$$

$$kinetic\ energy = \frac{1}{2} \times mass \times [velocity]^2$$

Electric circuits

power = voltage × current

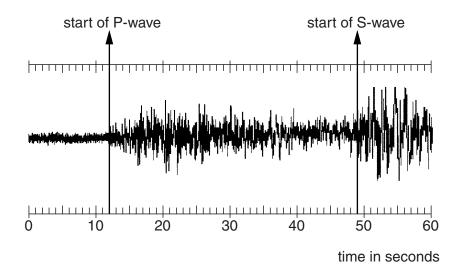
$$\frac{\text{voltage across primary coil}}{\text{voltage across secondary coil}} = \frac{\text{number of turns in primary coil}}{\text{number of turns in secondary coil}}$$

Radioactive materials

energy = mass
$$\times$$
 [speed of light in a vacuum]²

Answer all the questions.

- 1 This question is about objects which orbit the Sun.
 - (a) The table has data on the orbits of three planets around the Sun.

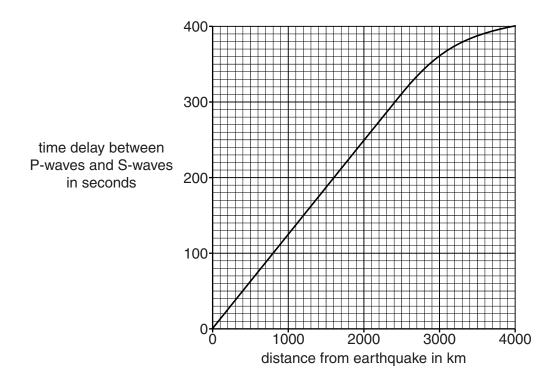

Planet	Distance from the Sun (millions of km)	Speed (km/s)	Diameter of planet (thousands of km)
Mercury	60	50	4.88
Earth	150	30	12.8
Jupiter	780	13	143

	(i)	Which of the following Put a tick (✓) in t			ly describes a corr t statement.	relation sho	wn in the table?
		Bigger plane	ets have a gr	eater speed			
		Planets clos	er to the Su	n have a grea	ater speed.		
		Smaller plan	ets are mor	e distant fror	n the Sun. $igg[$		
							[1]
	(ii)	The planet Mars	orbits at a d	istance of 23	0 million km from	the Sun.	
		Use information f	rom the tabl	e to estimat	e the speed of Ma	rs in its orbi	it.
		Explain your ans	wer.				
			•	estimated sp	eed =		km/s
							[2]
(b)	Plar	ets are not the or	nly objects w	hich orbit ou	r Sun.		
	Con	plete the sentend	ces below, u	sing words fr	om the list.		
ast	eroic	ls comets	galaxy	moons	solar system	stars	Universe
The	Sun	is at the centre of	f our				
Mar	ny sm	all objects orbit th	ne Sun. Som	ne of these a	re made of ice an	d dust, and	often have orbits
whi	ch ar	e not circular. The	se are				
Oth	er sm	nall objects are sto	ony. Most of	these have o	orbits between Ma	rs and Jupit	er.
The	se ar	e					503
							[3] [Total: 6]

	2	This	question	is	about	eartho	ıuakes	3.
--	---	------	----------	----	-------	--------	--------	----

(a)	(i)	Which of the following statements about earthquakes are correct?	
		Put ticks (\checkmark) in the boxes next to the two correct statements.	
		Earthquakes happen only in mountains.	
		Earthquakes never happen under the sea.	
		Earthquakes are caused by global warming.	
		Earthquakes usually happen where tectonic plates meet.	
		Volcanoes are often found in regions where earthquakes are common.	
			[2
	(ii)	In some parts of the Earth's crust there are large regions of liquid rock (maging the diagram shows an earthquake P-wave and an S-wave travelling through and arriving at a region of magma.	
		P-wave S-wave	
		solid rock \ \lambda liquid rock (magr	na)
		What happens to each wave when it reaches the magma?	

(b) The diagram shows the record at a detector of an earthquake.


Earth scientists estimate the distance from an earthquake to the detector using the rule:

1 second of time delay between the arrival of the P-waves and the arrival of the S-waves corresponds to a distance of 8 km.

(i) Use the diagram to find the distance between the earthquake and the detector.

answer =[2]

(ii) The graph shows the actual time delay for different distances from the earthquake.

se the graph to show that the '8km for every second of delay' rule works much bet distance of 2000km than at a distance of 4000km.	ter at

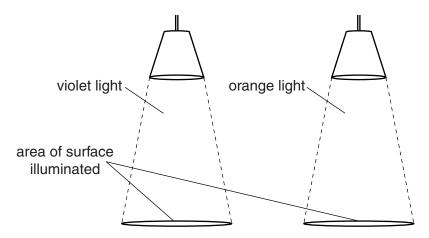
[Total: 8]

3 Astronomers first made measurements of distant galaxies using telescopes on the Earth.

Accurate measurements of the distances were very difficult to make.

Describe how astronomers measure distances to stars and galaxies.

Suggest why measurements made today are more accurate.


The quality of	written communication will	be assessed in your and	swer.
			[6]

[Total: 6]

4	(a)	Some of the statements below are true, and some are false.
		Put a tick (\checkmark) in the correct box after each statement.

	แนะ	iaise
High frequency photons have more energy than low frequency photons.		
Microwave radiation has the lowest frequency in the electromagnetic spectrum.		
Photons are packets of energy.		
Red light has higher frequency than violet light.		
The intensity of radiation gets larger when you get closer to its source.		

(b) The diagram shows two lamps giving out coloured light.

The energy of photons is measured in units called eV.

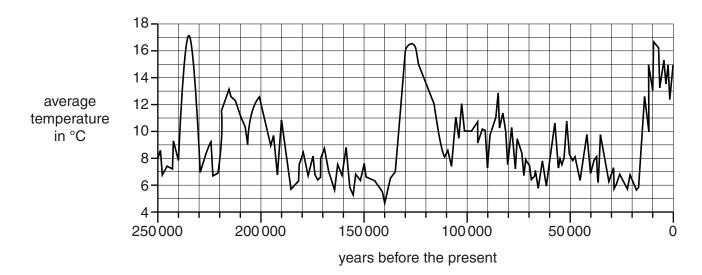
The table shows the energy of photons of these two colours of light.

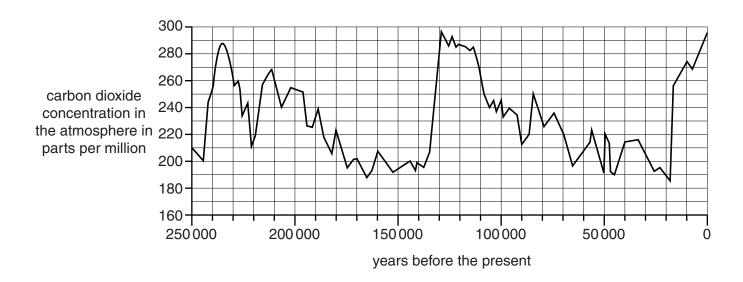
Colour	Energy in eV
violet	3
orange	2

Each surface is lit up with the **same intensity** over the same area.

Use information in the second. Explain your answer.	table to compare the r	numbers of photons	arriving at each surfa	ace each
				[2]

[Total: 5]


[3]


5

6

(a)	Describe how the Earth's atmosphere helps to protect us against this damage.
b)	We can help prevent ultraviolet damage to our skin by the way we behave in sunny weath Describe and explain one way we can do this.
	[Total
Bria	
	an will not get a microwave oven for his kitchen. He is sure they are dangerous. His ideas are confused. Brian Gamma rays are very dangerous. I'm not going to risk getting cancer.
	an will not get a microwave oven for his kitchen. He is sure they are dangerous. His ideas are confused. Brian Gamma rays are very dangerous. I'm not going
Dit o	an will not get a microwave oven for his kitchen. He is sure they are dangerous. His ideas are confused. Brian Gamma rays are very dangerous. I'm not going to risk getting cancer.
oit o	an will not get a microwave oven for his kitchen. He is sure they are dangerous. His ideas and confused. Brian Gamma rays are very dangerous. I'm not going to risk getting cancer.
oit o	an will not get a microwave oven for his kitchen. He is sure they are dangerous. His ideas and confused. Brian Gamma rays are very dangerous. I'm not going to risk getting cancer.
oit o	an will not get a microwave oven for his kitchen. He is sure they are dangerous. His ideas and confused. Brian Gamma rays are very dangerous. I'm not going to risk getting cancer.
oit o	an will not get a microwave oven for his kitchen. He is sure they are dangerous. His ideas and confused. Brian Gamma rays are very dangerous. I'm not going to risk getting cancer.
it	an will not get a microwave oven for his kitchen. He is sure they are dangerous. His ideas and confused. Brian Gamma rays are very dangerous. I'm not going to risk getting cancer.

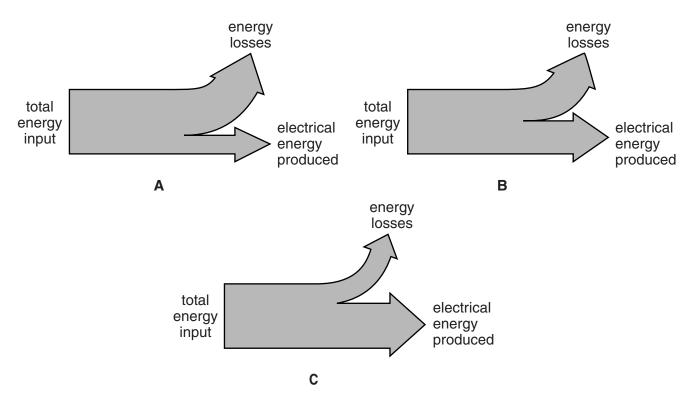
7 The two graphs show changes in the Earth's atmosphere over the past 250 000 years.

The graphs show that there is a **correlation** between average temperature and carbon dioxide concentration.

How can you tell there is a correlation, and what is the **cause** of this correlation?

The quality of written communication will be assessed in your answer.	
[6]	
[Total: 6]	
[101411 0]	

This	question is ab	out storing dig	ital images.				
(a)	Which of these units is used to measure the amount of information in a digital image?						
	Put a ring ard	ound the corre	ct unit.				
	byte	cm ³	hertz	watt			
							[1]
(b)			images use comused to work with		es.		
							[2]
	[Total: 3]						


		13		
9	(a)	Which one of these power stations produces greenhouse gases when it is working?		
		Put a tick (✓) in the box next to the correct answer.		
		coal burning power station		
		hydroelectric power station		

nuclear power station

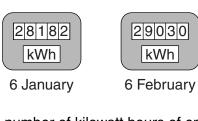
wind farm

[1]

(b) The Sankey diagrams below show the energy transfers in three different power stations.

Some of the statements below are true, and some are false. Put a tick (\checkmark) in the correct box after each statement.

	true	false
In each power station, total energy input = total energy output.		
Modern power stations are more than 100% efficient.		
Power station A is more efficient than power station B .		
Power station B has an efficiency of about 50%.		
Power station C is the most efficient of the three.		


[3]

[Total: 4]

Turn over

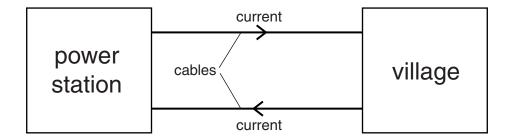
© OCR 2014

10	The Robinson family have an electricity meter.
	The diagram shows their meter on two different dates.

(a)	Use the meters to find the number of kilowatt hours of energy transferred between 6 January
	and 6 February.
	Show your working clearly

	(a)	and	e the meters to find the number of kilowatt hours of energy transferred between 6 Januar I 6 February. ow your working clearly.	у
			energy transferred =kWh []
	(b)	few	ween 6 July and 6 August, the Robinson's electricity bill showed that they used muc er kilowatt hours than in (a) . ggest and explain one reason for this.	h
				 <u>2]</u>
			[Total: 3	3]
11			ridge works for 24 hours a day, every day of the year. ver used is 150 watts.	
	(a)	(i)	Calculate the number of kilowatt hours of energy transferred in three months. Assume that three months = 2000 hours. Show your working.	

(a)	(i)	Calculate the number of kilowatt hours of energy transferred in three months.
		Assume that three months = 2000 hours.
		Show your working.


number of kilowatt hours =	[3]

(ii) How much does it cost to run this fridge for three months? 1 kilowatt hour costs 15 p.

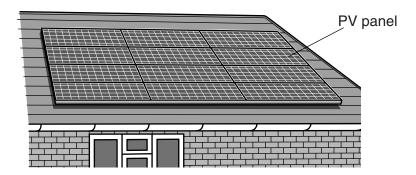
cost = £.....[1]

(b)	A modern fridge rated A++ uses 20 watts. This fridge will cost much less to use than the old one. Suggest why.				
	[Total: 5]				

12 The diagram shows a small village being supplied by electricity from a power station.

The power station produces 100 000 W of electrical power.

The power station could transfer the energy at 250 V or at 2500 V.


The table below shows what happens in each case.

Power produced at power station in W	Power station voltage in V	Power wasted in heating cables in W	Power delivered to village in W	
100 000	250	32 000	68 000	
100 000	2500	320	99 680	

Use information fron Give reasons for you	n the table to decide w ur answer.	vhich voltage should	d be used.	
				[2]

[Total: 2]

13 Many house-owners are putting sets of photovoltaic (PV) panels on their roofs to generate electricity during daylight. The panels work best if the roof used is facing south.

The data about the type of PV panel shown in the diagram are given in the table.

size of one panel (m × m)	1.5 × 0.8
average daily energy output of one panel (kWh)	0.6
cost per panel	£200

A family needs about 24 kWh of electricity per day, averaged out over the winter and the summer.

This family has decided to fit 12 panels on their roof to provide their energy needs throughout the year.

Discuss the advantages and disadvantages of fitting these panels to their roof.

he quality of written c	_	
 	 	[6]
		[Total: 6]

END OF QUESTION PAPER

18 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

19 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2014