Write your name here Surname	Ot	ther names
Edexcel International GCSE	Centre Number	Candidate Number
Physics Unit: 4PH0 Science (Double Av Paper: 1PR	vard) 4SC0	
Tuesday 14 May 2013 – M Time: 2 hours	orning	Paper Reference 4PH0/1PR 4SC0/1PR
You must have: Ruler, calculator		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross ⊠.

Information

- The total mark for this paper is 120.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

EQUATIONS	
You may find the following equations useful.	
energy transferred = current × voltage × time	$E = I \times V \times t$
pressure × volume = constant	$p_1 \times V_1 = p_2 \times V_2$
frequency = $\frac{1}{\text{time period}}$	$f = \frac{1}{T}$
$power = \frac{work \text{ done}}{time taken}$	$P = \frac{W}{t}$
$power = \frac{energy transferred}{time taken}$	$P = \frac{W}{t}$
orbital speed = $\frac{2\pi \times \text{orbital radius}}{\text{time period}}$	$v = \frac{2 \times \pi \times r}{T}$

Where necessary, assume the acceleration of free fall, $g = 10 \text{ m/s}^2$.

2 The diagram shows a water wave.	
height in cm $\begin{pmatrix} 2\\1\\-1\\-2\\-2 \end{pmatrix}$ $\begin{pmatrix} 4\\8\\12\\16\\distance in cm\\ \end{pmatrix}$	20
(a) (i) The amplitude of the wave is	
🖾 A 1 cm	(1)
■ B 2 cm	
C 4 cm	
☑ D 8 cm	
(ii) The wavelength of the wave is	
■ A 2 cm	(1)
\mathbf{B} 4 cm	
✓ C 8 cm	
 ☑ D 20 cm 	
(b) Describe one difference between transverse and longitudinal waves.	
Draw a labelled diagram to help your answer.	
	(3)
4	

1

(c)	Sta	ite t	wo properties that are the same for all electromagnetic waves.	(2)
2				
	Soi	me	types of wave are used in hospitals.	
			scanner uses one type of wave to check for broken bones.	
		Th	e type of wave emitted by the scanner is	
	\mathbf{X}	A	infrared	(1)
	\times	В	microwaves	
	X	С	sound	
	X	D	X rays	
	(ii)	An	image of the bone is seen because the waves from the scanner are	
	\mathbf{X}		absorbed by the bone	(1)
	\mathbf{X}		reflected by the bone	
	\mathbf{X}	С	refracted by the bone	
	X	D	transmitted by the bone	
	(iii)		me one type of wave that is used in cancer treatment and explain what it es during the treatment.	(2)
Type of	f wa	ave		
Explana	atio	on o	f what it does	
	(Total for Question 2 = 11 marks)			

5

3 (a) Temperature can be measured using different scales.

Complete the table by inserting the missing temperatures.

(2)

Temperature	Boiling point of liquid nitrogen	Boiling point of water
in °C		100
in Kelvin	77	

(b) Some students measure the volume of a sample of gas at different temperatures. The table below shows their results.

Temperature in °C	Volume in litres
- 20	0.95
0	0.85
50	1.20
80	1.30
100	1.40

(b) (i) Describe two ways to increase the speed of rotation of the coil in this motor. (2) 1_____ 2 (ii) Suggest how to make the coil spin in the opposite direction. (1) (c) In a different motor, the magnets are curved and there is a piece of iron inside the coil. The iron increases the strength of the magnetic field through the coil. piece of iron Ν S Suggest how the curved magnets and the piece of iron improve the performance of the electric motor. (2) (Total for Question 4 = 8 marks) 9

3 3 1

9 A O

Stage	Description
В	
D	

(b) State how the graph shows that the accelerat acceleration for stage A.	ion for stage E is greater than	
		(1)
(c) Calculate the distance that the student travels	s in the last 10 s of the journey	1
		. (4)
	distance =	m
(d) The total distance travelled is 106.5 m.		
Show that the average speed of the journey is	s about 4 m/s	
show that the average speed of the journey i.	1 1000 H Hi/3.	(3)
	(Total for Question 5 =	10 marks)

6	A spray-can contains gas particles that are constantly moving.	
	button	
	(a) (i) How do the gas particles produce a pressure on the walls of the spray-can?	(3)
	(ii) A student presses the button and some liquid leaves the can. The student concludes	
	I think that the gas pressure in the spray-can decreases as the liquid leaves the can.	
	Evaluate this conclusion.	(3)

warmed by the sun on a hot day?		(1)
	(Total for Question 6 =	7 marks)
	9 A 0 1 3 3 2	

P 4 3 3 1 9 A 0 1 4 3 2

(b)	On another descent, the LR5 experiences a total pressure of 41×10^5 Pa. The entrance to the LR5 is through an access door which has an area of 3.1 m ² . (i) State the equation linking pressure, force and area.	(1)
	(ii) Calculate the force on the outside of the door.	(3)
	force =	N
(c)	The LR5 is tested in fresh water.	
	The density of fresh water is 1000 kg/m ³ .	
	Explain why the pressure on the submarine in the fresh water is less than the pressure in sea at the same depth.	(1)

(d) A student is given a sample of liquid labelled sea water.		
	sea water	
Describe an experiment that the sample.	he student could carry out to find the density of the (5)	
	(Total for Question 7 = 14 marks)	
16		

BLANK PAGE

- 8 A student investigates the extension of a rubber band when masses are added.
 - (a) Tick the boxes to select the correct items of apparatus that the student would need in order to complete this investigation.

Two items have already been selected.

ItemTick (✓) if item
neededammetersteel springretort stand and clamp✓rubber band✓rulerthermometermass hanger✓masses✓

(b) The table below shows the student's results.

Mass in g	Force in N	Extension in cm
0	0	0.0
150	1.5	2.4
350	3.5	6.3
550		12.8
750	7.5	18.6
1050	10.5	24.0

(i) Complete the table by inserting the missing force.

(1)

(2)

(b) (i) The lamps are on for 7 hours a day for 5 days. Calculate the total energy transferred during this time.	(3)
energy transferred = (ii) Describe the energy changes that take place in the lamps when they are connected to the power supply.	J (2)
(Total for Question 9 = 9	marks)

10	A student investigates how the resistance of a piece of wire changes with voltage across the wire.	
	The student connects an ammeter, a voltmeter, a battery, a variable resistor and the wire in an electrical circuit.	
	(a) (i) Complete the diagram to show how the student should connect the circuit.	(3)
	piece of wire	
	(ii) Describe what she should do to obtain a set of results for her investigation.	(3)
	(ii) Describe what she should do to obtain a set of results for her investigation.	(3)
	(ii) Describe what she should do to obtain a set of results for her investigation.	(3)
	(ii) Describe what she should do to obtain a set of results for her investigation.	(3)
	(ii) Describe what she should do to obtain a set of results for her investigation.	(3)
·····	(ii) Describe what she should do to obtain a set of results for her investigation.	(3)
·····	(ii) Describe what she should do to obtain a set of results for her investigation.	(3)
·····	(ii) Describe what she should do to obtain a set of results for her investigation.	(3)
	(ii) Describe what she should do to obtain a set of results for her investigation.	(3)
	(ii) Describe what she should do to obtain a set of results for her investigation.	(3)

P 4 3 3 1 9 A 0 2 2 3 2

(b) The student keeps the temperature of the wire constant during the investigation.	
(i) Suggest why she does this.	(1)
(ii) Suggest how she does this.	(1)
(c) When the student looks at her results, she notices that the voltage across the wire is directly proportional to the current in it.	
(i) State the relationship linking voltage, current and resistance.	(1)
(ii) The student calculates the resistance and then plots a graph of resistance against voltage.	
On the axes, sketch the shape of her graph.	(1)
resistance	
voltage (Total for Question 10 = 10 mark	ks)
	2:

- (c) Another ball with the same mass has a kinetic energy of 3.1 J.
 - (i) State the equation linking kinetic energy, mass and speed.

(1)

(3)

(ii) Calculate the speed of the ball.

speed = m/s

(Total for Question 11 = 8 marks)

(b) State the form of energy that is released during fission.	(1)
(c) How does the shielding improve safety?	(1)
(Total for Question 12 =	7 marks)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27 Turn over

12 The diagram shows a magnet hold above a soil. The soil is connected to a voltmeter	
13 The diagram shows a magnet held above a coil. The coil is connected to a voltmeter.	
S magnet	
(a) The magnet is released and falls into the coil.	
(i) Explain why the voltmeter shows a reading.	(2)
(ii) The magnet is released from a greater height.	
How does this affect the voltmeter?	
Explain your answer.	(2)

(b) State how the voltmeter reading changes when the same magnet	
(i) moves more slowly into the coil	(1)
(ii) moves into a coil with more turns	(1)
(iii) is reversed so that the S-pole enters the coil first.	(1)
(Total for Question 13 =	7 marks)
P 4 3 3 1 9 A 0 2 9 3 2	29 Turn over

(b) (i) Use the grid to calculate the number of neutrons in a ²¹⁰ Po nucleus.	(1)
number of neutrons = (ii) Describe what happens to the number of protons and the number of neutrons when a nucleus of ²¹⁰ Pb decays to form ²¹⁰ Bi.	(2)
(iii) State the type of decay that occurs when ²¹⁰ Pb decays to form ²¹⁰ Bi. (c) Explain why the mass (nucleon) number and the atomic (proton) number do not	(1)
change when a gamma ray is emitted from a nucleus.	(2)
(Total for Question 14 = 9 ma TOTAL FOR PAPER = 120 MAI	

BLANK PAGE