

GCE

Chemistry B (Salters)

Unit F335: Chemistry by Design

Advanced GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2014

Annotations used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
/, OR	alternative and acceptable answers for the same marking point
\checkmark	separates marking points
NOT	answers which are not worthy of credit and which will CON a correct answer
IGNORE	statements which are irrelevant and will NOT 'CON' a correct answer
ALLOW	answers that can be accepted
()	words which are not essential to gain credit but which give the theme of the answer
	underlined words must be present in an answer to score a mark
ecf	error carried forward
AW	alternative wording (replaces the old 'or words to that effect')
ora	or reverse argument

Annotations used in scoris:

Annotation	Meaning
\checkmark	use to indicate where marks have been scored – one tick per mark
×	incorrect response – no need to use unless indicating where an error has occurred
BOD	benefit of the doubt (give a tick as well)
NBOD	benefit of the doubt <u>not</u> given
ECF	error carried forward
٨	information omitted
1	Ignore
SF	Significant figures
BP	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.
SEEN	Use to indicate that a continuation answer has been read.
CON	A statement that contradicts a correct answer
RE	Rounding error
NGE	Use sparingly to indicate an answer that is not quite detailed enough

Mark Scheme

Subject-specific Marking Instructions that apply across the whole question paper to be included here.

- (a) Accept minor mis-spellings where the 'sound' is right, except:
 - for the QWC mark
 - where it changes a technical term (eg alkene/alkane)
- (b) If the answer on the answer line (or in a box) differs from a previous answer (copying error), mark the answer on the answer line (or in box). If the answer line (or box) is blank, reward the answer elsewhere if possible.
- (c) In calculations, rounding errors should not be rewarded, unless the Mark Scheme indicates otherwise. Allow commas for decimal points. Numbers read erroneously from calculators (eg '1.5E-06') should not be allowed on the first 'correct' occasion they are used but can be allowed subsequently in the paper.
- (d) If the mark-scheme says 'mark separately', marks can be awarded even if the answer does not hang together well without the other mark. However, if the later marking point has words in brackets before it, the mark should only be awarded in the context of those words.
- (e) Formulae must have correct brackets and subscripts to score (except where allowed by Additional Guidance). Element symbols must have small second letters (eg not BA). These errors and the use of a wrong symbol should, if possible, only result in the loss of ONE mark in a part (rather than more marks).
- (f) Multiples of equations are acceptable (including halves) unless specified otherwise. Allow the omission of one plus sign in an equation if the species are still well separated.
- (g) Hyphens in intermolecular bond names are not obligatory.

MARK SCHEME

Before marking part 1a, please look at all the extra pages. (These come above part 1a on the display). If there is nothing on them, stamp each 'BP', otherwise link them to the appropriate question part. When marking that part, please ensure that there is some annotation on the extra page (eg, tick, cross, SEEN) to indicate that you have been there.

Quest	ion	Answer	Mark	Guidance
1	а	temp: increased yield/ more products \checkmark forward reaction [stated or implied] is <u>endothermic</u> (ora) \checkmark	4	ALLOW 'it increases' IGNORE 'equilibrium (position) moves to right' QWC: <u>endothermic</u> (or <u>exothermic</u> for ora) must be used and spelled correctly to score second mark
		pressure: no effect on yield AW \checkmark same number of (gaseous) moles/ molecules on each side (of equation) AW \checkmark		ALLOW 'no effect on <u>position</u> of equilibrium' ALLOW 'no change of yield'/'no increase of yield' NOT 'little effect on yield' etc No ecf but mark separately within each pair.
1	b	speeds up achievement of equilibrium	2	
		speeds up both (forward and back) reactions \checkmark no effect on K_c (AW) \checkmark		Can score this alternative for the first marking point while explaining effect on ${\it K}_{\rm c}$
1	С	$(K_{c} = [H_{2}O] [CO] / [H_{2}] [CO_{2}])$	4	
		1. [H ₂ O] [CO] = 2.68496 x 10^{-12} (3 or more sf) \checkmark 2. either concentration = 1.63858 x 10^{-6} (2 or more sf) \checkmark		award 1. if later answers correct
		3. both concentrations to 3 sf (1.64 x 10^{-6}) \checkmark		3. award for any numbers to 3sf
		4. concentrations equal ✓		1.64×10^{-6} twice on the answer lines scores 4 marks without reference to working.

Quest	Question		Answer	Mark	Guidance
1	d	i	the sun OR burning CO ✓	1	ALLOW 'uv'
1	d	ii	oxygen (is formed) ✓	1	any mention of oxygen that makes sense IGNORE references to CO ₂ and/or hydrogen
1	е	i	+42 ✓	1	plus sign essential
1	e	ii	 42 = 40000/T ✓ T = 950 ✓ K/ Kelvin ✓ 	3	 ALLOW ecf from a positive (or no sign) value from (i) for 1. and 2. (T = 40000/ans to(i)). award both marks 1. and 2. if correct answer for T given ALLOW two sf up to calculator value (952.38)(correctly rounded) 0.95/0.95238 etc scores 1 mark for 2. (but not 1.) no other ecf from 1.to 2. 3. mark separately ALLOW 'k' IGNORE + sign for temperature (- is CON) NOT degree sign before K
	e	111	equilibrium const/ $K_c = 1$ OR reaction (equally) balanced/in the middle OR no tendency to go in either direction AW \checkmark	1	ALLOW rate of forward reaction = rate of back reaction
			Total	17	

Que	Question		Answer	Mark	Guidance
2	а		SO ₃ ⁻ (Na ⁺) \checkmark ion(-)dipole bonds/interactions (with water) \checkmark OR OH/NH \checkmark form hydrogen bonds (with water) \checkmark	2	 ALLOW groups marked on formula of dye IGNORE names for first mark ALLOW ion-dipole bonds or ion attraction to H^{δ+} described Second mark depends on first being scored except 'alcohol' is CON to OH for first mark but second mark can still be considered Correct name (sulfonate, phenol/hydrox(I), (secondary) amine) allows second mark of pair to be scored
2	b	i	(primary) amine ✓	1	ALLOW amino
2	b	ii	benzenediazonium chloride √	1	ALLOW benzene diazonium chloride ALLOW diazonium chloride/ (benzene)diazonium <u>ion/salt</u> IGNORE formulae
2	b	iii	coupling ✓	1	ALLOW electrophilic substitution IGNORE 'synthesis', '(di)azo'
2	b	iv	react with (hydrogen)carbonates/ formulae ✓ effervescence/fizz/give gas/give CO ₂ ✓	2	ALLOW any carbonate (eg CaCO ₃) second mark depends on first IGNORE other products of reaction or other correct reactions
2	C	i	$ \begin{array}{c} $	2	Mark separately Structure must be correctly copied ALLOW N–H for 'NH' and carbon atoms shown

Que	estion	n	Answer	Mark	Guidance	
2	C	ii	 dye is 'fast' in water/ dye does not run when washing/dye is not washed out/ dye stays/ dye lasts longer/ does not dissolve AW ora ✓ covalent bonds not broken by/in water/ covalent bonds not made between dye and water✓ hydrogen bonds are broken by/in water / hydrogen bonds made between dye and water ✓ 	3	ALLOW 'colour' for 'dye' IGNORE 'fading' IGNORE 'dye will not form hydrogen bonds with water' to score either of the second two marking points, there must be a clear implication that water is involved, i.e.: IGNORE 'covalent bonds are stronger than hydrogen bonds'	
2	d		 1.<u>Electron(s)</u> excited to/move to higher <u>energy level</u> ✓ 2.∆E = hv / frequency absorbed related to energy gap ✓ 3. <u>Light/visible</u> (radiation) is <u>absorbed</u> ✓ 	5	ALLOW 'state' for 'level' IGNORE 'shell' Do not award this mark if in terms of d electrons In 2. ALLOW $E = hv$ only if energy <i>change</i> is clear ALLOW 'gap betwen energy levels' for ' ΔE ' ALLOW 'hf' for 'hv' ALLOW 'excitation energy' for ΔE	
			 4. size of ∆E/frequency/wavelength depends on: EITHER length of/size of/bonding in/functional groups in chromophore OR amount of delocalisation ✓ 5.complementary colour transmitted/reflected ✓ 		 NOT 'electrons falling' in connection with any radiation given out (only mpts 2. and 4. can be considered) QWC: only award 5. if 3. scored OR 'frequency absorbed' stated ALLOW 'complimentary' IGNORE 'emission' ALLOW 'colours/frequencies/wavelengths not absorbed' for 'complementary colour' 	

Que	estion	n	Answer			Mark	Guidance
2	e	i	Type of reaction Skeletal formula of organic product	Structure C substitution ✓ Br	Structure D addition ✓ Br Br Br Br Br Br Br Br Br Br	4	 IGNORE 'electrophilic' or 'bromination' in 'type' boxes but 'nucleophilic' is CON to either or both ALLOW di or tri bromination of C ALLOW D with two double bonds brominated or brominated at 1,4. ALLOW substituted Kekulé benzene in lower left box IGNORE names and molecular and non-skeletal formulae IGNORE '+HBr' in bottom left box
2	е	ii	different (bond) leng double bonds are sh		onds √	2	Second marking point also scores first
2	f	i	$C_6H_6 + Cl_2$ equation \checkmark			2	mark separately IGNORE state symbols ALLOW any suitable structures for substances ALLOW catalyst formula over arrow in the question stem IGNORE (for second mark) names of catalysts and 'anhydrous' or 'reflux' or 'heat' Other reagents above or below arrow are CON
2	f	ii	NaOH/ sodium hydro	oxide √		1	ALLOW any group 1 hydroxide IGNORE water/ H ₂ O
					Total	26	

Qı	Question		Answer	Mark	Guidance	
3	а	i	ethanol 🗸	1	NOT ethan-1-ol	
3	а	ii	propane – 1,2,3 – triol ✓	1	ALLOW errors in gaps, commas and dashes ALLOW propan – 1,2,3 – triol IGNORE glycerol/ glycerine	
3	b		2/two √	1		
3	С	i	permanent (dipole)–permanent dipole ✓	1	No abbreviations allowed ALLOW mis-spellings on the 'sounds like' rule ALLOW permanent dipole-induced dipole	
3	C	ii	Type of imb and related reason Ester G has weaker/ fewer/less instantaneous dipole–induced dipole bonds (<i>ora</i>) \checkmark Ester G is a smaller molecule/shorter molecule/lower molecular mass/has fewer/less electrons/ molecules of G have smaller surface area/ fewer points of contact ora \checkmark OR ester G has fewer/weaker permanent dipole – permanent dipole bonds ora \checkmark ester G has fewer ester/C=O groups (allow 'only one' otherwise must be comparative) ora \checkmark <i>Less energy to break</i> Less energy is needed to break/overcome im-bonds or separate the molecules (ora) \checkmark	3	Second mark in pair depends on first being scored; allow either reason if both id and pd bonds mentioned id–id bond or pd-pd can be abbreviated hydrogen bonds are CON to first two points IGNORE 'chains' or comments about molecules fitting more closely mark third mark separately	

Qu	esti	ion	Answer	Mark	Guidance
3	d	I	RO C_7H_{11} RO C_7H_{11} two arrows on left-hand structures \checkmark intermediate \checkmark two arrows on intermediate \checkmark Award one mark for one correct arrow on reactant and one on intermediate if there are no incorrect arrows (other detail can be incorrect)	3	 curly arrows must start on correct atom, bond or charge (if projected backwards) and end pointing at correct bond or atom. (Left-hand arrow can either point to C or the line between the lone pair and C) ALLOW arrow from '-' sign on RO⁻: ALLOW right-hand arrow starting from a drawn lone pair on -O⁻ Do not allow 'half arrows' (fish-hooks) the first time encountered, but allow by ecf subsequently. IGNORE partial charges
3	d	ii	nucleophile ✓	1	
3	e	i	$C_7H_{11}COOH + ROH \Rightarrow C_7H_{11}COOR + H_2O$ Equilibrium sign \checkmark equation (with equm sign or arrow) \checkmark	2	ALLOW any unambiguous structural formulae ALLOW $CH_3CHCHCH_2CHCHCH_2COOH + ROH \Rightarrow$ $CH_3CHCHCH_2CHCHCH_2COOR + H_2O$ IGNORE errors in the chain as long as there are seven carbon atoms shown in the chain. Mark separately ALLOW reaction with ethanol (CH_3CH_2OH or C_2H_5OH)
3	е	ii	catalyst \checkmark removes/ reacts with/lowers concentration of water \checkmark	2	ALLOW 'provides H ⁺ ions'/ 'protonates' as <i>alternative</i> to 'catalyst' but only one can score.
3	f	i	C ₂ H ₃ CH(CH ₃)COOH structure ✓ chiral C marked on correctly bonded structure√	2	ALLOW any unambiguous indication of structure and any clear way of indicating chiral carbon (eg asterisk)

Qu	esti	on	Answer	Mark	Guidance
3	f	ii	No broad peak at 2500 – 3200 OR no O-H peak in range 2500 - 3200 OR no peak 1700 – 1725 (for acid C=O) \checkmark For ester C=O: EITHER Peak at 1741 OR peak in range 1735 – 1750 \checkmark	2	 ALLOW 'around/at 3000' for '2500 – 3200' to score this way it must be stated that there is <u>no peak</u> peak value, 'ester' and bond necessary for this mark IGNORE extra information even if wrong.
3	f	iii	 1.structure: CH₃COOCH(CH₃)₂ ✓ ✓ (CH₃)₂CHCOOCH₃ ✓ 2. description of doublet (1.2): one H on adjacent <u>carbon</u> ✓ <i>Maximum of 2 from</i> 3. 3 proton <u>environments</u>/ protons in ratio 6:3:1 (or 1:3:6 etc) 4. two CH₃ groups on one C / two CH₃ in same environment ✓ 	5	ALLOW any unambiguous representation of the structure ALLOW 'H' for 'proton' but IGNORE H ⁺
			5. CH attached to O/ CH-O/ O-CH (5.0) OR CH next to <u>carbon(s)</u> with many/six H (5.0) \checkmark 6. CH ₃ attached to C=O (2.0) OR CHC=O OR CH ₃ next to <u>carbon</u> with no H \checkmark		 5. NOT CHO 6. IGNORE CO for C=O IGNORE any incorrect points unless they directly contradict one that has been awarded a mark
			Total	24	

Que	Question		Answer	Mark	Guidance
4	а	i	(primary) amide ✓	1	'secondary' is CON
4	а	ii	2 RCONH ₂ + H ₂ SO ₄ + 2H ₂ O → (NH ₄) ₂ SO ₄ + 2 RCOOH species \checkmark balancing with correct species \checkmark	2	IGNORE state symbols ALLOW multiples and halves
4	а	iii	hydrolysis ✓	1	ALLOW any unambiguous identification of the word
4	b	i	$\begin{array}{c} \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & $	3	Mark separately detail of water molecule can be shown as separate diagram. Ignore wrong water molecules
					ALLOW 'ion dipole' (no hyphen)

Que	estio	n	Answer	Mark	Guidance
4	b	11	1. $2NH_4^+(g) + SO_4^{2^-}(g) \checkmark$ 2. enthalpy (change) of hydration of ions \checkmark 3. $2NH_4^+(aq) + SO_4^{2^-}(aq) / (NH_4)_2SO_4(aq) \checkmark$ 5. $(NH_4)_2SO_4(s) \checkmark$ 4. enthalpy (change) of solution \checkmark State symbols must be shown correctly	5	Scale is not important Mark separately, but ALLOW ecf between 1. and 3. if wrong species or numbers shown consistently in both ALLOW missing '+' sign between ions in 1. and 3. 2. ALLOW 'solvation' for 'hydration' ALLOW $\Delta H_{hyd(ration)}$ for 'enthalpy (change) of hydration'(or $\Delta H_{solv(ation)}$) It must be clear that <u>both</u> ions are referred to and arrow must be present. ALLOW 'enthalpy(change) of hydration of cation(s)* + (enthalpy(change) of hydration of) anion*' *ALLOW if a cation and an anion are shown using wrong formulae 4. To award mark for 'enthalpy (change) of solution', it must be endothermic and upward arrow must be shown ALLOW ΔH_{sol} / $\Delta H_{solution}$
4	С	i	$\begin{array}{rcl} NH_4{}^+ &\rightleftharpoons & NH_3 + H^+ \\ acid & & base \checkmark \end{array}$	1	IGNORE 'conjugate'
4	С	ii	$\frac{[\mathrm{NH}_3][\mathrm{H}^+]}{[\mathrm{NH}_4^+]} \checkmark$	1	ALLOW multiplication signs State symbols not required, but any other than 'aq' [ignore absence of brackets] are CON.

Que	Question		Answer	Mark	Guidance
4	С	111	[H ⁺](or H ⁺) = 7.4(13102) x 10 ⁻⁶ ✓ $K_a (= (7.41 \times 10^{-6})^2 / 0.1) = 5.5 \times 10^{-10} \checkmark$ mol dm ⁻³ ✓	3	ALLOW 2 or more sf for first marking point.first mark is automatically scored if correct answer is given to K_a value ALLOW ecf from first marking point, provided 'H ⁺ =' or '[H ⁺] =' is shown and [H ⁺] is smaller than 1 x 10 ⁻⁴ ALLOW any answer rounding to 5.5 x 10 ⁻¹⁰ mark last marking point separately
4	С	iv	$K_{a} \times K_{b} = K_{w} \mathbf{OR} \ K_{b} = K_{w} / K_{a} \checkmark$	2	ALLOW expressions with numbers substituted
			$K_{\rm b} = 1.0 \times 10^{-14}$ /(answer to (c)(iii)) calculated (1.8 x 10 ⁻⁵ if (c)(iii) correct) \checkmark		correct answer (with ecf from (c)(iii)) scores 2 without reference to working no ecf from first marking point ALLOW any answer rounding to 1.8×10^{-5}
4	d		H ⁺ added / more H ⁺ \checkmark equilibrium <u>position</u> moves to left \checkmark large concentration/ large amount of A ⁻ \checkmark pH remains (virtually) unchanged/resists change in pH \checkmark	4	IGNORE 'acid added' ALLOW change in A ⁻ concentration is very small compared to the initial A ⁻ concentration IGNORE 'large concentration of HA'
4	e		OH/alcohol group reacts with acid/COOH group OR two molecules react/condense to lose (two molecules of) water ✓	2	ALLOW any correct representation of structure
			Total	25	

Que	Question		Answer	Mark	Guidance
5	а	i	both double bonds correct \checkmark	2	ALLOW electrons in lone pairs that are not close together Give BOD wherever possible on rubbing out etc. ALLOW double bonds as '• • x x' or • x x • IGNORE shape ALLOW other symbols for dots and crosses
5	а	ii	 1.<u>three</u> groups/ sets/ regions of electrons/ areas of electron density (around S) √ 2. (electrons/ [as for 1.]) repel and get as far away from each other as possible/ repel to minimise repulsion √ 3.120° √ 	3	 IGNORE 'electron pairs/ bonds/ bonding pairs' IGNORE 'bonds' and 'pairs' IGNORE 'repel as much as possible' ALLOW 115 – 125 Mark separately No ecf
5	а	iii	$\begin{array}{c} \bullet \bullet \\ + O \\ + O \\ + O \\ + + \bullet \\ + + \bullet \\ \bullet \\ + + \end{array} $ One oxygen with dative bond and three lone pairs \checkmark completely correct \checkmark	2	See guidance in 5ai ALLOW structure with dative bond and double bond reversed.
5	а	iv	$SO_2(g/aq) + H_2O(l/g) \Rightarrow 2H^+(aq) + SO_3^{2-}(aq)$ OR $SO_2(g/aq) + H_2O(l/g) \Rightarrow H^+(aq) + HSO_3^-(aq)$ equation \checkmark state symbols \checkmark	2	ALLOW arrow instead of \Rightarrow . ALLOW equations with oxygen forming SO ₄ ²⁻ or HSO ₄ ⁻ [eg 2SO ₂ (g/aq)+2H ₂ O(l/g) +O ₂ (g) \Rightarrow 4H ⁺ (aq)+2SO ₄ ²⁻ (aq)] ss mark can be awarded if equation is unbalanced but correct species are present (and only those).
5	b	i	$SO_2 + 2H_2S> 3S + 2H_2O$ +4 \checkmark -2 \checkmark 0 \checkmark	3	NOT sign after numbers, but give one mark for 4+ AND 2–

Que	Question		Answer	Mark	Guidance
5	b	ii	AND moles $H_2S = 44.3/34(.1)$ or 1.3 \checkmark	3	ALLOW any numbers rounding to 0.69 and 1.3 ALLOW ecf from 1. to 2. and 3.
			2. SO ₂ in excess/ H ₂ S is limiting (AW) \checkmark 3. mass S formed (= 1.3 x 1.5 x 32.1) = 62.6 g [62.4 if 32 used as A_r] \checkmark (Allow any number between 62.4 and 63)		Answer alone scores third mark only Answers from use of moles of SO ₂ (allow any number between 66 and 67) can score mark 3. but not 2. ALLOW 2 or more sf
5	b	iii	low mpt ✓ weak intermolecular bonds/ weak instantaneous dipole–induced dipole bonds ✓ non-conductor/ poor conductor (of electricity)/good insulator ✓ no ions/ no charged particles / no free (or delocalised) electrons ✓	4	QWC: second mark in each pair depends on first being scored.IGNORE 'S is a gas'IGNORE 'not ionic' IGNORE 'in solution'IGNORE references to solubility or boiling point or
5	С	i	 1.an <u>element</u> in group 6 OR 'sulfur/S/oxygen/O is/are in group 6' ✓ 2. <u>compound</u> of S/O/ element with hydrogen ✓ 	2	strength ALLOW 'atom/element with 6 outer electrons' ALLOW 'bonded to'/ 'combined with'/ 'reacted with' 'molecule containing' instead of 'compound' ALLOW 'bonded to a hydrogen' award second mark without first if some element or atom described
5	С	ii	 O/oxygen is more electronegative ora√ and one from √ O/oxygen is smaller so gets closer to H (ora) O–H more strongly polarised/ molecule more strongly polarised/ H more positive (ora) 	2	must be comparative ALLOW <u>'water/H₂O</u> forms hydrogen bonds, <u>H₂S</u> forms pd- pd bonds' (allow abbreviation and just 'pd')

Que	Question		Answer	Mark	Guidance
5	С	iii	density decreases on freezing because: EITHER <u>molecules</u> get further apart (ora) OR 'more open structure' ✓	2	allow any idea of greater separation of molecules here, including anything between the molecules.
			hydrogen bonding keeps ice in a lattice/ regular arrangement/ crystalline structure/ tetrahedral structure/ordered (AW) \checkmark		mention of 'air','oxygen' between molecules CONs second mark. IGNORE 'empty space' or 'open space' for second mark
5	d	i	1s²2s²2p ⁶ 3s²3p ⁶ / [Ne] 3s²3p ⁶ ✓	1	ALLOW capital letters but electron numbers must be superscripts
5	d	ii	$(NH_4)_2S + 2NaOH \rightarrow 2NH_3 + Na_2S + 2H_2O$ Na ₂ S as a product \checkmark completely correct \checkmark	2	 ALLOW (NH₄)₂S + 2NaOH → 2NH₄OH + Na₂S IGNORE state symbols NOT formulae or equation containing ions formulae must be represented in conventional way but ALLOW otherwise correct balanced equation forming (Na)₂S for 1 mark
			Total	28	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

