Write your name here			
Surname		Other names	
Edexcel GCE	Centre Number		Candidate Number
Chemistry Advanced Unit 5: General Princip Metals and Orga (including syno	les of Chemis anic Nitrogen	Óhemis	
Monday 28 June 2010 – M	orning		Paper Reference
Time: 1 hour 40 minutes			6CH05/01
You must have: Data Booklet			Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

edexcel

7/7/7/2/

	this se	ALL the questions in this section. You should aim to spend no more than 20 minutes oction. For each question, select one answer from A to D and put a cross in the box \boxtimes . u change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .
1		reaction of manganate(VII) ions with reducing agents in strongly acidic solution, f-reaction for the reduction is
	A	$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$
	B	$MnO_4^- + 4H^+ + 5e^- \rightarrow Mn^{2+} + 2H_2O$
	C	$MnO_4^- + 8H^+ + 3e^- \rightarrow Mn^{2+} + 4H_2O$
	D 🛛	$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$
		(Total for Question 1 = 1 mark)
2		titration of iodine with standard sodium thiosulfate solution, starch is often used ndicator. The starch should not be added until nearly all the iodine has reacted e
	A	it is decomposed by high concentrations of iodine.
	B	the blue complex formed is bleached by high concentrations of iodine.
	C	the blue complex formed with high concentrations of iodine is insoluble and does not re-dissolve as more thiosulfate is added.
	D 🛛	the starch reacts with the thiosulfate ions being added.
		(Total for Question 2 = 1 mark)
3	The co 0 V are	nditions needed for the E^{\oplus} value of the standard hydrogen electrode to be exactly e
	A	1 mol dm ⁻³ solution of hydrogen ions, 1 atm pressure of hydrogen, 25 °C.
	B	1 mol dm ⁻³ solution of hydrogen ions, 1 atm pressure of hydrogen, room temperature.
		1 mol dm ⁻³ solution of hydrogen ions, laboratory pressure of hydrogen, 25 °C.
	C	
	ĭ C I D	0.1 mol dm ⁻³ solution of hydrogen ions, 1 atm pressure of hydrogen, 25 °C.

		-	tial for a		n be use	ed to cald	culate the	e equilibrium constant for
A	E_{cell}^{\oplus}	is prop	ortional	to ln <i>K</i> .				
B	E_{cell}^{\oplus}	is prop	ortional	to <i>K</i> .				
C	$\ln E_{co}^{\in}$	ell is pro	oportion	al to ln	К.			
D 🛛	$\ln E_{co}^{\in}$	ell is pro	oportion	al to <i>K</i> .				
							(*	Total for Question 4 = 1 mark)
			ving succ ion elem		ionizatio	on energi	es (valu	es in kJ mol ⁻¹) could have
A	496	4563	6913	9544	13352	16611	20115	25941
B	590	1145	4912	6474	8144	10496	12320	14207
C	717	1509	3249	4940	6985	9200	11508	18956
D	2081	3952	6122	9370	12177	15239	19999	23069
							(*	Total for Question 5 = 1 mark)
			is very u of the fo				a catalyst	t in catalytic converters in
motor	cars. V It con	Which on werts i	of the for nitrogen	llowing oxides	is true? and car	bon mon	oxide to	t in catalytic converters in nitrogen and carbon dioxide ing their bonds.
motor	cars. V It con by ac It con	Vhich c nverts 1 lsorbin nverts 1	of the for nitrogen g the rea	llowing oxides actants oxides	is true? and car on its su and car	bon mon irface so bon mon	oxide to weakeni	nitrogen and carbon dioxide
Motor o	cars. V It con by ac It con by be	Which of nverts i lsorbin nverts i eing ab	of the for nitrogen g the rea nitrogen le to cha	llowing oxides actants oxides ange its	is true? and car on its su and car oxidatio	bon mon irface so bon mon	oxide to weakeni oxide to	nitrogen and carbon dioxide ing their bonds.
motor o ☑ A ☑ B	cars. V It con by ac It con by be It ox	Vhich onverts in Isorb	of the for nitrogen g the rea nitrogen le to cha	llowing oxides actants oxides ange its fuel to o	is true? and carl on its su and carl oxidation carbon r	bon mon Irface so bon mon on state. nonoxide	oxide to weakeni oxide to	nitrogen and carbon dioxide ing their bonds.
motor o	cars. V It con by ac It con by be It ox	Vhich onverts in Isorb	of the for nitrogen g the rea nitrogen le to cha unburnt	llowing oxides actants oxides ange its fuel to o	is true? and carl on its su and carl oxidation carbon r	bon mon Irface so bon mon on state. nonoxide	oxide to weakeni oxide to e.	nitrogen and carbon dioxide ing their bonds.
motor of A	cars. V It con by ac It con by be It ox It ox	Vhich onverts in Isorbin nverts i eing ab idizes u idizes u	of the for nitrogen g the rea nitrogen le to cha unburnt	llowing oxides actants oxides ange its fuel to fuel to	is true? and cari on its su and cari oxidatio carbon r carbon c	bon mon Irface so bon mon on state. nonoxide lioxide.	oxide to weakeni oxide to e.	nitrogen and carbon dioxide ing their bonds. nitrogen and carbon dioxide
motor of A	cars. V It con by ac It con by be It ox It ox	Vhich onverts in Isorbin nverts i eing ab idizes u idizes u	of the for nitrogen g the rea nitrogen le to cha unburnt	llowing oxides actants oxides ange its fuel to fuel to es the el	is true? and cari on its su and cari oxidatio carbon r carbon c	bon mon Irface so bon mon on state. nonoxide lioxide.	oxide to weakeni oxide to e.	nitrogen and carbon dioxide ing their bonds. nitrogen and carbon dioxide Fotal for Question 6 = 1 mark)
motor of A	cars. V It con by ac It con by be It ox It ox	Vhich onverts in Isorbin nverts i eing ab idizes u idizes u	of the for nitrogen g the rea nitrogen le to cha unburnt unburnt	llowing oxides actants oxides ange its fuel to fuel to es the el	is true? and car on its su and car oxidatio carbon r carbon c	bon mon irface so bon mon on state. nonoxide lioxide. c configu	oxide to weakeni oxide to e.	nitrogen and carbon dioxide ing their bonds. nitrogen and carbon dioxide Fotal for Question 6 = 1 mark)
Motor of A A B C D Which	cars. V It con by ac It con by be It ox It ox of the	Vhich of nverts i lsorbin nverts i eing ab idizes u idizes u follow	of the for nitrogen g the rea nitrogen le to cha unburnt unburnt	llowing oxides actants oxides ange its fuel to fuel to es the el	is true? and car on its su and car oxidation carbon c lectronic	bon mon rface so bon mon on state. nonoxide lioxide. c configu Cr^{3+}	oxide to weakeni oxide to e.	nitrogen and carbon dioxide ing their bonds. nitrogen and carbon dioxide Fotal for Question 6 = 1 mark)

	ated Cr ³⁺ and hydrated Cr ²⁺ , in this order?
\times	
\times	Orange, green, yellow, blue
	(Total for Question 8 = 1 mark)
pro	n dichromate(VI) ions, $Cr_2O_7^{2-}$, react with iron(II) ions in acidic solution, the ucts are chromium(III) ions and iron(III) ions. In what ratio do the dichromate(VI) and the iron(II) ions react?
	1:6
	1:5
\mathbf{X}	2:5
\mathbf{X}	1:3
	(Total for Question 9 = 1 mark)
10 The	compound [Pt(NH ₃) ₂ Cl ₂] is
	tetrahedral with no isomers.
	square planar with no isomers.
	tetrahedral with two isomers.
\mathbf{X}	square planar with two isomers.
	(Total for Question 10 = 1 mark)
	(Total for Question $10 = 1$ mark) hexaaquacopper(II) ion, $[Cu(H_2O)_6]^{2+}$, is blue because the water ligands
	hexaaquacopper(II) ion, $[Cu(H_2O)_6]^{2+}$, is blue because the water ligands
☑ 1 11 The	hexaaquacopper(II) ion, $[Cu(H_2O)_6]^{2+}$, is blue because the water ligands split the <i>p</i> -orbital energies and <i>p</i> - <i>p</i> electron transitions emit blue light.
 ☑ 1 11 The ☑ 2 	hexaaquacopper(II) ion, $[Cu(H_2O)_6]^{2+}$, is blue because the water ligands split the <i>p</i> -orbital energies and <i>p</i> - <i>p</i> electron transitions emit blue light. split the <i>d</i> -orbital energies and <i>d</i> - <i>d</i> electron transitions absorb all but blue light.

12 If phenol and benzene are tested separately with bromine water, you would expect to see that A benzene and phenol would both decolorize bromine water. **B** benzene would decolorize bromine water, but phenol would not do so. C neither benzene nor phenol would decolorize bromine water. **D** benzene would not decolorize bromine water, but phenol would do so. (Total for Question 12 = 1 mark) 13 An organic compound X is much more soluble in dilute hydrochloric acid than in water. Compound X forms a coloured complex with aqueous copper(II) ions. Compound X could be \square A C₆H₅COOH \square **B** C₆H₅NO₂ \square C C₆H₅NH₂ \square **D** C₆H₅OH (Total for Question 13 = 1 mark) 14 Which of the following shows the generation of the electrophile in the reaction of benzene with ethanoyl chloride in the presence of anhydrous aluminium chloride? \square A CH₃COCl + AlCl₃ \rightarrow [CH₃CO]⁺ + AlCl₄⁻ \square **B** CH₃COCl + AlCl₃ \rightarrow [CH₃CO]⁻ + AlCl₄⁺ \square C CH₃CH₂Cl + AlCl₃ \rightarrow [CH₃CH₂]⁺ + AlCl₄⁻ \square **D** CH₃COOCl + AlCl₃ \rightarrow [CH₃COO]⁻ + AlCl₄⁺ (Total for Question 14 = 1 mark) Use this space for any rough working. Anything you write in this space will gain no credit.

	e, H_2NCH_2COOH , is a solid that has a melting temperature of about 250 °C, and ry soluble in water. This is because of the	
🖾 A	formation of intermolecular hydrogen bonds in the solid and hydrogen bonds with water.	-
B	formation of $H_3N^+CH_2COO^-$ ions which interact strongly with each other in the solid and with water.	-
□ C	dissociation of the molecule to form $H_2NCH_2COO^-$ and H^+ ions in the solid and the solution.	-
D D	protonation of the molecule to form $H_3N^+CH_2COOH$ ions in both the solid and the solution.	-
	(Total for Question 19 = 1 mark)	
Organi that	c solids are often purified by recrystallization. This technique works on the basis	
A 🛛	the impurities must be insoluble in the solvent used.	1-
B	the impurities must react with the solvent used.	-
C	the impurities crystallize first when the hot solution is cooled.	-
⊠ D	the cooled solution is saturated with the desired material but not with the impurities.	1
	(Total for Question 20 = 1 mark)	
	TOTAL FOR SECTION A = 20 MARKS	

 Answer ALL the questions. Write your answers in the spaces provided. 21 Brass is an alloy of copper, zinc and, in some cases, other metals too. There are over 30 varieties of brass for different applications. The amount of copper in a brass can be found as follows: A weighed sample of brass is reacted with the minimum amount of concentrated nitric acid. The solution is neutralized, a portion of it pipetted into a conical flask, and excess potassium iodide solution is added. The iodine produced is titrated with a solution of sodium thiosulfate of known concentration. (a) The ionic equation for the reaction between copper metal and concentrated nitric acid is shown below. Cu(s) + 2NO₃⁻(aq) + 4H⁺ (aq) → Cu²⁺(aq) + 2NO₂(g) + 2H₂O(l) (i) Give the oxidation numbers of the copper and nitrogen in both the reactants and products. (2) Copper: from to to (ii) Write the two half-equations that can be combined to give the ionic equation shown above. 		SECTION B	
 30 varieties of brass for different applications. The amount of copper in a brass can be found as follows: A weighed sample of brass is reacted with the minimum amount of concentrated nitric acid. The solution is neutralized, a portion of it pipetted into a conical flask, and excess potassium iodide solution is added. The iodine produced is titrated with a solution of sodium thiosulfate of known concentration. (a) The ionic equation for the reaction between copper metal and concentrated nitric acid is shown below. Cu(s) + 2NO₃⁻(aq) + 4H⁺ (aq) → Cu²⁺(aq) + 2NO₂(g) + 2H₂O(l) (i) Give the oxidation numbers of the copper and nitrogen in both the reactants and products. (2 Copper: from	Ar	nswer ALL the questions. Write your answers in the spaces provided	l.
 A weighed sample of brass is reacted with the minimum amount of concentrated nitric acid. The solution is neutralized, a portion of it pipetted into a conical flask, and excess potassium iodide solution is added. The iodine produced is titrated with a solution of sodium thiosulfate of known concentration. (a) The ionic equation for the reaction between copper metal and concentrated nitric acid is shown below. Cu(s) + 2NO₃⁻(aq) + 4H⁺ (aq) → Cu²⁺(aq) + 2NO₂(g) + 2H₂O(l) (i) Give the oxidation numbers of the copper and nitrogen in both the reactants and products. 			e over
 nitric acid. The solution is neutralized, a portion of it pipetted into a conical flask, and excess potassium iodide solution is added. The iodine produced is titrated with a solution of sodium thiosulfate of known concentration. (a) The ionic equation for the reaction between copper metal and concentrated nitric acid is shown below. Cu(s) + 2NO₃⁻(aq) + 4H⁺ (aq) → Cu²⁺(aq) + 2NO₂(g) + 2H₂O(l) (i) Give the oxidation numbers of the copper and nitrogen in both the reactants and products. 	The am	nount of copper in a brass can be found as follows:	
 excess potassium iodide solution is added. The iodine produced is titrated with a solution of sodium thiosulfate of known concentration. (a) The ionic equation for the reaction between copper metal and concentrated nitric acid is shown below. Cu(s) + 2NO₃⁻(aq) + 4H⁺ (aq) → Cu²⁺(aq) + 2NO₂(g) + 2H₂O(l) (i) Give the oxidation numbers of the copper and nitrogen in both the reactants and products. 	•	• •	centrated
 concentration. (a) The ionic equation for the reaction between copper metal and concentrated nitric acid is shown below. Cu(s) + 2NO₃⁻(aq) + 4H⁺ (aq) → Cu²⁺(aq) + 2NO₂(g) + 2H₂O(l) (i) Give the oxidation numbers of the copper and nitrogen in both the reactants and products. (2 Copper: from to Nitrogen: from to (i) Write the two half-equations that can be combined to give the ionic equation shown above.	•		and
 is shown below. Cu(s) + 2NO₃⁻(aq) + 4H⁺ (aq) → Cu²⁺(aq) + 2NO₂(g) + 2H₂O(l) (i) Give the oxidation numbers of the copper and nitrogen in both the reactants and products. (2) Copper: from to Nitrogen: from to (ii) Write the two half-equations that can be combined to give the ionic equation shown above. 	•		known
 (i) Give the oxidation numbers of the copper and nitrogen in both the reactants and products. (2) Copper: from to			nitric acid
products. (2 Copper: from to Nitrogen: from to (ii) Write the two half-equations that can be combined to give the ionic equation shown above.		$Cu(s) + 2NO_3(aq) + 4H^+(aq) \rightarrow Cu^{2+}(aq) + 2NO_2(g) + 2H_2O(l)$	
Copper: from to Nitrogen: from to (ii) Write the two half-equations that can be combined to give the ionic equation shown above.	(i)	•••••	
Nitrogen: from to (ii) Write the two half-equations that can be combined to give the ionic equation shown above.	~		
(ii) Write the two half-equations that can be combined to give the ionic equation shown above.	Copper: fi	rom to	
(2			
	Nitrogen:	from to Write the two half-equations that can be combined to give the ionic equ	ation
	Nitrogen:	from to Write the two half-equations that can be combined to give the ionic equ	ation
	Nitrogen:	from to Write the two half-equations that can be combined to give the ionic equ	
	Nitrogen:	from to Write the two half-equations that can be combined to give the ionic equ	ation
	Nitrogen:	from to Write the two half-equations that can be combined to give the ionic equ	ation
	Nitrogen:	from to Write the two half-equations that can be combined to give the ionic equ	ation
	Nitrogen:	from to Write the two half-equations that can be combined to give the ionic equ	ation

(iii) Explain why the standard electrode potentials for the two ionic half-equation that you have written give an incorrect value for E_{cell} for this reaction as described above.	ns (2)
 (b) The solution produced contains a mixture of zinc ions and copper ions. (i) State TWO observations that you would see if concentrated ammonia solution were to be added, drop by drop, to the solution until in excess. 	on (2)
 (ii) Copper ions can be separated from the zinc ions in the solution by adding sodium hydroxide solution in excess, followed by filtration of the mixture. Write equations, including state symbols, for the THREE reactions that occu Equation 1 	ır. (3)
Equation 2 Equation 3	

*(iii)	Give examples of amphoteric behaviour and ligand exchange, by reference to the reactions of zinc compounds.	(3)
up to 25.0	imple of Admiralty Brass of mass 3.00 g was treated with nitric acid and made o a neutral solution of volume 250 cm ³ . Excess potassium iodide was added to 0 cm ³ portions of this solution, and the liberated iodine was titrated with sodium sulfate solution, concentration 0.100 mol dm ⁻³ . The mean titre was 33.10 cm ³ .	
(i)	Write the ionic equation for the reaction between thiosulfate ions and iodine.	(1)
*(ii)	The equation for the reaction between copper(II) ions and iodide ions is shown below.	
	$2Cu^{2+} + 4I^- \rightarrow 2CuI + I_2$	
	Hence calculate the percentage by mass of copper in Admiralty Brass. Give your answer to three significant figures.	(6)

Explain the	g up the burette, a student failed effect that this would have on th	e value of the first titre.	
	itre was included in the calculati ave on the value for the percenta		(2)
		(Total for Question 21 = 23	marks)

(a) (i)	Give TWO properties shown by vanadium compounds that are characteristic of transition metal chemistry, other than variable oxidation state.	
		(2)
(ii)	Vanadium(III) ions in aqueous solution exist as $[V(H_2O)_6]^{3+}$.	
	Draw this ion so as to clearly show its shape. Name the type of bond between the ligand and the vanadium ion and state the feature of the ligand that enables this bond to be formed.	
		(3)

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

24

A major function of the chemical industry is the manufacture of perfumes and flavourings. Perfumes were originally made from natural products, such as spermaceti from whales or civetone from the civet cat. The use of synthetic equivalents is generally cheaper and the supply is more reliable, and does not require the animals to be killed which obtaining spermaceti did. Synthetic perfumes and flavourings are usually nature-identical, although naturally-occurring molecules that have stereoisomers are sometimes produced synthetically as mixtures since the stereospecific synthesis required might be difficult to achieve economically.

Some chiral molecules have a different taste depending on which enantiomer is present. The enantiomer (–)-carvone tastes and smells of spearmint, and its mirror-image, (+)-carvone, of caraway or dill. In some cases only one enantiomer has any taste; this is true for glucose. The mirror image molecule of naturally occurring glucose has no taste and cannot even be absorbed or metabolized. Many drug molecules are chiral, though paracetamol is not. The wrong isomer present in a drug may be positively damaging, which was the case with thalidomide. In order to synthesize optically-pure drug molecules, it is important to understand the mechanism of any reaction used. Using an S_N1 reaction which involves the chiral centre would result in the product mixture being racemic. It is advantageous to use stereospecific catalysts wherever possible, and industry on the whole prefers to use heterogeneous rather than homogeneous catalysts.

(a) The skeletal formula of carvone is shown below. Draw a circle around the chiral carbon atom.

(1)

single enantiomer such as (–)-carvone.	(3)
(c) Carvone contains two types of functional group. For each of these, give a suitable chemical test to show its presence, and state what you would see in each case.	(4)

(i)	On reduction with hydrogen, in the presence of a platinum catalyst, 4.5 g of carvone reacted with 1.44 dm ³ of hydrogen. Use these data to deduce the skeletal formula of the reduction product.	
	[Molar mass of carvone is 150 g mol ⁻¹ ; molar volume of hydrogen at the temperature and pressure of the experiment is 24 dm ³ mol ⁻¹ .]	(3)
Working		
Honco ska	slotal formula of roduction product	
Hence ske	eletal formula of reduction product.	
Hence ske	eletal formula of reduction product.	
Hence ske	eletal formula of reduction product.	
Hence ske	eletal formula of reduction product.	
Hence ske	eletal formula of reduction product.	
Hence ske	eletal formula of reduction product.	
Hence ske	eletal formula of reduction product.	
Hence ske	eletal formula of reduction product.	

_			
	(e) (i)	Draw the skeletal formula of the molecule that would be obtained if carvone were to be reacted with an excess of hydrogen bromide in an inert solvent.	(2)
	(ii)	If the product from (e)(i) were to be heated with ethanolic potassium hydroxide solution, elimination would occur and HBr would be lost. Would the resulting molecule necessarily be carvone? Explain your answer.	(2)

 \square

	of the starting material. Explain what your mechanism predicts about the stereochemistry of the product.	(5)
		< 7
(ii)	Suggest why industrial chemists prefer to use heterogeneous rather than	
(11)	homogeneous catalysts.	
		(1)

BLANK PAGE

BLANK PAGE

BLANK PAGE

							1	
0 (8)	(18) 4.0 helium 2	20.2 Neon 10	39.9 Ar argon 18	83.8 Kr krypton 36	131.3 Xenon 54	[222] Rn radon 86	ted	
2	(21)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br bromine 35	126.9 iodine 53	[210] At astatine 85	seen repor	175 Lu lutetium 71 [257] Lr lawrencium 103
Ŷ	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0 Se selenium 34	127.6 Te tellurium 52	[209] PO polonium 84	116 have h nticated	173 Yb ytterbium 70 [254] No 102
ß	(15)	14.0 N nitrogen 7	31.0 P phosphorus 15	74.9 AS arsenic 33	121.8 Sb antimony 51	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated	169 Tm thulium 69 Md mendelevium 101
4	(14)	12.0 C carbon	28.1 28.1 silicon 14	72.6 Ge germanium 32	118.7 Sn tin 50	207.2 Pb lead 82	atomic nui but not f	167 Er erbium 68 68 [253] Fm fermium 100
٣	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7 Ga gallium 31	114.8 In indium 49	204.4 Tl thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated	165 Ho hotmium 67 [254] Es einsteinium
			(12)	65.4 Zn _{zinc} 30	112.4 Cd cadmium 48	200.6 Hg ^{mercury} 80		163 165 Dy Ho dysprosium holmium 66 67 [251] [254] Cf Es catifornium einsteinium 98 99
			(11)	63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au ^{gold} 79	[272] Rg roentgenium 111	159 Tb terbium 65 [245] BK berketium 97
5			(10)	58.7 Ni nickel 28	106.4 Pd palladium 46	195.1 Pt platinum 78	[271] DS damstadtium 110	157 Gd gadolinium 64 [247] Cm 96
	hydrogen 1		(6)	58.9 Co cobalt 27	- Ē	192.2 Ir iridium 77	[268] Mt meitnerium 109	152 Eu europium 63 [243] Am emericium
			(8)	55.8 Fe iron 26	101.1 Ru ruthenium 44	190.2 Os osmium 76	[277] HS hassium 108	150 Sm samarium 62 [242] Pu plutonium 94
			(2)	54.9 Mn manganese 75		186.2 Re rhenium 75	[264] Bh bohrium 107	[147] Promethium 61 [237] Partunium 93
-		mass bol umber	(9)	52.0 54.9 Cr Mn chromium manganese 24 25	95.9 [98] Mo TC motybdenum technetium 42 43	183.8 V tungsten 74	[266] Sg seaborgium 106	144 Nd 60 U U vranium 92
	Key	relative atomic mass atomic symbol name atomic (proton) number	(2)	50.9 V vanadium 23	α E	180.9 Ta tantalum 73	[262] Db dubnium 105	141 144 [147] Pr Nd Pm praseodymium neodymium promethium 59 60 61 231] 238 [237] Pa U Np protactinium uranium neptunium protactinium uranium neptunium 91 92 93
			(4)	47.9 Ti titanium 27	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf rutherfordium 104	140 Ce 58 58 232 Z 32 H H 58 90
			(3)	45.0 Sc scandium 21	88.9 88.9 yttrium 39	138.9 La* lanthanum 57	[227] AC* actinium 89	х х
2	(2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	40.1 Ca calcium 20	87.6 Sr strontium 38	m F	[226] Ra radium 88	* Lanthanide series * Actinide series
-	(E)	6.9 Li lithium		39.1 K potassium 19	85.5 Rb 37	132.9 Cs caesium 55	[223] Fr francium 87	* Lanth * Actini

