A-level

MATHEMATICS

7357/2
Paper 2
Mark scheme
June 2020
Version: 1.0 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]
Mark scheme instructions to examiners

General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- marking instructions that indicate when marks should be awarded or withheld including the principle on which each mark is awarded. Information is included to help the examiner make his or her judgement and to delineate what is creditworthy from that not worthy of credit
- a typical solution. This response is one we expect to see frequently. However credit must be given on the basis of the marking instructions.

If a student uses a method which is not explicitly covered by the marking instructions the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

Key to mark types

M	mark is for method
R	mark is for reasoning
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
F	follow through from previous incorrect result

Key to mark scheme abbreviations

CAO	correct answer only
CSO	correct solution only
ft	follow through from previous incorrect result
'their'	Indicates that credit can be given from previous incorrect result
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
sf	significant figure(s)
dp	decimal place(s)

AS/A-level Maths/Further Maths assessment objectives

AO		Description
A01	A01.1a	Select routine procedures
	A01.1b	Correctly carry out routine procedures
	AO1.2	Accurately recall facts, terminology and definitions
AO2	AO2.1	Construct rigorous mathematical arguments (including proofs)
	AO2.2a	Make deductions
	AO2.2b	Make inferences
	AO2.3	Assess the validity of mathematical arguments
	AO2.4	Explain their reasoning
	AO2.5	Use mathematical language and notation correctly
AO3	A03.1a	Translate problems in mathematical contexts into mathematical processes
	A03.1b	Translate problems in non-mathematical contexts into mathematical processes
	A03.2a	Interpret solutions to problems in their original context
	A03.2b	Where appropriate, evaluate the accuracy and limitations of solutions to problems
	AO3.3	Translate situations in context into mathematical models
	AO3.4	Use mathematical models
	A03.5a	Evaluate the outcomes of modelling in context
	A03.5b	Recognise the limitations of models
	A03.5c	Where appropriate, explain how to refine models

Examiners should consistently apply the following general marking principles

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to students showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the student to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Work erased or crossed out

Erased or crossed out work that is still legible and has not been replaced should be marked. Erased or crossed out work that has been replaced can be ignored.

Choice

When a choice of answers and/or methods is given and the student has not clearly indicated which answer they want to be marked, mark positively, awarding marks for all of the student's best attempts. Withhold marks for final accuracy and conclusions if there are conflicting complete answers or when an incorrect solution (or part thereof) is referred to in the final answer.

\mathbf{Q}	Marking instructions	AO	Marks	Typical solution
$\mathbf{1}$	Circles correct answer	2.2 a	B 1	$\mathrm{f}(x)=-e^{x-1}$
		Total		$\mathbf{1}$

\mathbf{Q}	Marking instructions	AO	Marks	Typical solution
$\mathbf{2}$	Ticks correct box	2.2 a	B1	$\sec x=0$
		Total		

Q	Marking instructions	AO	Marks	Typical solution
3	Uses the product of $(2 x)^{5}$ and $\left(\pm \frac{3}{x}\right)^{3}$ terms condone sign error and/or omission of ${ }^{n} \mathrm{C}_{\mathrm{r}}$ term Or Obtains any two correct terms (unsimplified) term	3.1a	M1	${ }^{8} C_{3}(2 x)^{5} \times\left(-\frac{3}{x}\right)^{3}=56 \times 32 \times-27 x^{2}$ \therefore coefficient is -48384
	Multiplies their $(2 x)^{5}$ and $\left(-\frac{3}{x}\right)^{3}$ by ${ }^{8} \mathrm{C}_{3}$ or ${ }^{8} \mathrm{C}_{5}$ or 56 OE For this mark condone $(2 x)^{3}$ and $\left(-\frac{3}{x}\right)^{5}$	1.1a	M1	
	```Obtains correct coefficient of x -48384 condone inclusion }\mp@subsup{x}{}{2```	1.1b	A1	
	Total		3	


$\mathbf{Q}$	Marking instructions	AO	Marks	Typical solution
$\mathbf{4}$	Uses or states small angle   approximation for tan $5 x \approx 5 x$	1.1 b	B 1	$\frac{x \tan 5 x}{\cos 4 x-1} \approx \frac{x \times 5 x}{1-\frac{(4 x)^{2}}{2}-1}$
Uses or states small angle   approximation for   $\cos 4 x \approx 1-\frac{(4 x)^{2}}{2}$   Condone omission of bracket	1.1 b	B 1	$\approx \frac{5 x^{2}}{-8 x^{2}}$	
Substitutes their expressions   Of the form tan $5 x \approx m x$ and   $\cos 4 x \approx 1-\frac{n x^{2}}{2}$	1.1 b	M 1		
into $\frac{x \tan 5 x}{\cos 4 x-1}$   Condone correct extra terms	Total			
Deduces $A=-\frac{5}{8}$ from a reasoned   argument   CSO	2.2 a	R 1		
		$\mathbf{4}$		


Q	Marking instructions	AO	Marks	Typical solution
5	Uses a suitable substitution $u=4 x+1$ or $u=\sqrt{4 x+1}$ OE	3.1a	M1	$u=4 x+1 \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=4$
	Differentiates their substitution correctly	1.1b	A1	$x=-\frac{1}{4} \Rightarrow u=0$
	Completes substitution to obtain correct integrand for their suitable substitution. Can be unsimplified.	1.1a	M1	$\begin{aligned} & x=6 \Rightarrow u=25 \\ & x=\frac{u-1}{4} \end{aligned}$
	Correctly integrates their simplified integrand provided it is of the form $A\left(u^{\frac{3}{2}}-u^{\frac{1}{2}}\right) \text { or } B\left(u^{4}-u^{2}\right)$	1.1a	A1	$\begin{aligned} \int_{-\frac{1}{4}}^{6} x \sqrt{4 x+1} \mathrm{~d} x & =\int_{0}^{25} \frac{u-1}{4} \sqrt{u} \frac{1}{4} \mathrm{~d} u \\ & =\frac{1}{25} u^{\frac{3}{2}}-u^{\frac{1}{2}} \mathrm{~d} u \end{aligned}$
	Substitutes correct limits for their substitution or 6 and $-1 / 4$ for $x$	1.1a	M1	$\begin{aligned} & =\frac{1}{16}\left[\frac{2 u^{\frac{5}{2}}}{5}-\frac{2 u^{\frac{3}{2}}}{3}\right]_{0}^{25} \\ & =\frac{1}{8}\left(\frac{25^{\frac{5}{2}}}{5}-\frac{25^{\frac{3}{2}}}{3}\right)^{25} \\ & =\frac{875}{12} \end{aligned}$
	Completes rigorous argument to show the required result.	2.1	A1	
	Total		6	


Q	Marking instructions	AO	Marks	Typical solution
6(a)	Begins a valid method to find the coordinates   Uses gradient of $L$ to find gradient of perpendicular radius Or   Forms equation of circle with unknown radius and solves simultaneously with equation of $L$ Or differentiates equation of circle implicitly	3.1a	M1	$\begin{aligned} 5 y+12 x & =298 \\ y & =\frac{-12}{5} x+\frac{298}{5} \\ y-9 & =\frac{5}{12}(x-7) \end{aligned}$
	Uses $(7,9)$ to find the equation of the radius   Or   Uses $(7,9)$ correctly in their equation of circle Or Uses $\frac{-12}{5}$ after their implicit differentiation	1.1a	M1	$\begin{aligned} & x=19 \\ & y=14 \\ & (19,14) \end{aligned}$
	Obtains $12 y-5 x=73$ OE   Or   Correctly eliminates a variable to obtain a quadratic in $x$ or $y$ for example obtain a quadratic in $x$ or $y$ $\begin{aligned} & (x-7)^{2}+\left(\frac{298-12 x}{5}-9\right)^{2}=k \\ & \Rightarrow(x-7)^{2}+\left(\frac{253-12 x}{5}\right)^{2}=k \\ & \left(\frac{298-5 y}{12}-7\right)^{2}+(y-9)^{2}=k \\ & \Rightarrow\left(\frac{214-5 y}{12}\right)^{2}+(y-9)^{2}=k \end{aligned}$	1.1b	A1	
	Equates discriminant to zero PI By correct answer or   Solves their simultaneous equations of tangent and radius PI by correct answer	3.1a	M1	
	Obtains correct values for $x$ and $y$ $(19,14)$	1.1b	A1	
	Subtotal		5	


6(b)	Obtains $(x-7)^{2}+(y-9)^{2}=r^{2}$   PI if $r^{2}$ is replaced with correct value using their point from (a)	1.1a	M1	$\begin{aligned} (x-7)^{2}+(y-9)^{2} & =r^{2} \\ (19-7)^{2}+(14-9)^{2} & =r^{2} \\ 12^{2}+5^{2} & =169 \\ (x-7)^{2}+(y-9)^{2} & =169 \end{aligned}$
	Uses their point to find radius or radius squared.   Must have obtained a point in part (a)	1.1a	M1	
	Obtains correct equation of circle CSO ACF	1.1b	A1	
	Subtotal		3	
	Question Total		8	


Q	Marking instructions	AO	Mark	Typical solution
7(a)(i)	Identifies the error lies in step 1 without contradiction.	2.3	E1	Mistake is $\frac{1}{a}+\frac{1}{b}=\frac{2}{a+b}$
	Subtotal		1	
7(a)(ii)	Recalls correct addition Accept $\frac{b}{a b}+\frac{a}{a b}$	1.1b	M1	$\frac{1}{a}+\frac{1}{b}=\frac{a+b}{a b}$   $a+b$ is rational and $a b$ is rational and therefore
	Completes rigorous argument to complete proof. Must state that $a b$ is rational (and nonzero) and $a+b$ is rational and conclude that $\frac{1}{a}+\frac{1}{b}$ or $\frac{a+b}{a b}$ is rational	2.1	R1	$\frac{1}{a}+\frac{1}{b}$ is rational.
	Subtotal		2	
7(b)	States assumption to begin proof by contradiction may Pl by $\frac{a}{b}-x=\frac{c}{d} \text { or } x-\frac{a}{b}=\frac{c}{d}$	3.1a	M1	Assume that the difference between a rational and an irrational number is rational. $\frac{a}{b}-x=\frac{c}{d}$   Where $a, b, c$ and $d$ are integers, $b, d \neq 0$ and $x$ is irrational $\begin{aligned} x & =\frac{a}{b}-\frac{c}{d} \\ & =\frac{a d}{b d}-\frac{c b}{b d} \\ & =\frac{a d-c b}{b d} \end{aligned}$   Hence $x$ is rational. This is a contradiction hence the difference of any rational number and any irrational number is irrational.
	Uses language and notation correctly to state initial assumptions:   States their $a, b, c$ and $d$ are integers   and   $x$ is irrational do not accept the irrational written as a fraction Condone missing $b, d \neq 0$	2.5	A1	
	Demonstrates that $x$ can be expressed as a rational number by obtaining $x=\frac{a d-c b}{b d} \mathrm{OE}$	1.1b	M1	
	Completes rigorous argument to prove the required result, clearly explaining where the contradiction lies with ALL assumptions correct at the start (including $b, d \neq 0$ )	2.1	R1	
	Subtotal		4	
	Question Total		7	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Marking instructions \& AO \& Mark \& Typical solution \\
\hline \multirow[t]{3}{*}{8(a)} \& Eliminates t \& 1.1a \& M1 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \frac{y}{2}=t, \quad x=\frac{y^{2}}{4} \\
\& y^{2}=4 x
\end{aligned}
\]} \\
\hline \& Writes the Cartesian equation in the required form \& 1.1b \& A1 \& \\
\hline \& Subtotal \& \& 2 \& \\
\hline \multirow[t]{2}{*}{8(b)(i)} \& \begin{tabular}{l}
Differentiates both \(\frac{d x}{d t}=2 t\), \(\frac{d y}{d t}=2\) with at least one correct Or Differentiates their \(y^{2}=4 x\) to obtain \(y \frac{\mathrm{~d} y}{\mathrm{~d} x}=A\) \\
Or rearranges and differentiates \(y=2 \sqrt{x}\) and obtains
\[
\frac{\mathrm{d} y}{\mathrm{~d} x}=A x^{-\frac{1}{2}}
\] \\
OE \\
Obtains correct \(\frac{d y}{d x}\) at \(t=a\) \\
Explains that the gradient of a line is the tangent of the angle between the line and the horizontal \\
or \\
shows on right-angled triangle on diagram and links to \(\tan \theta\) and concludes \(\tan \theta=\frac{1}{a}\)
\end{tabular} \& \begin{tabular}{|c}
3.1 a \\
\\
\\
\\
\\
\\
\\
\\
\hline 1.1 b \\
\hline 2.4
\end{tabular} \& M1

A1

E1 \& | $\begin{aligned} & \frac{d x}{d t}=2 t, \quad \frac{d y}{d t}=2 \\ & \frac{d y}{d x}=\frac{2}{2 a}=\frac{1}{a} \end{aligned}$ |
| :--- |
| The gradient of a line is equal to the tangent of the angle between the line and the horizontal hence $\tan \theta=\frac{1}{a}$ | <br>

\hline \& Subtotal \& \& 3 \& <br>

\hline \multirow[t]{3}{*}{8(b)(ii)} \& Uses formula for gradient of straight line with points $A$ and $B$ Must have $a^{2}-1$ or $1-a^{2}$ in denominator \& 1.1a \& M1 \& \multirow[t]{2}{*}{$$
\begin{aligned}
\tan \phi & =\frac{2 a-0}{a^{2}-1} \\
& =\frac{2 a}{a^{2}-1}
\end{aligned}
$$} <br>

\hline \& Obtains correct $\tan \phi$ OE \& 1.1b \& A1 \& <br>
\hline \& Subtotal \& \& 2 \& <br>
\hline
\end{tabular}

8(b)(iii)	States double angle formula for $\tan 2 \theta$	1.2	B1	$\begin{aligned} \tan 2 \theta & =\frac{2 \tan \theta}{1-\tan ^{2} \theta} \\ & =\frac{2 \times \frac{1}{a}}{1-\left(\frac{1}{a}\right)^{2}} \\ & =\frac{2 a}{a^{2}-1} \\ & =\tan \phi \end{aligned}$
	Substitutes $\tan \theta=\frac{1}{a}$ into their $\tan 2 \theta=\frac{2 \tan \theta}{1 \pm \tan ^{2} \theta}$	1.1a	M1	
	Simplifies and completes argument to show required result	2.1	R1	
	Subtotal		3	
	Question Total		10	


Q	Marking instructions	AO	Marks	Typical solution
9(a)	Identifies and clearly defines variable for radius of cylinder. Can be shown on diagram or can be implied by use in $V=\pi r^{2} h$	2.5	B1	Radius of cylinder $=r$$\begin{aligned} & h^{2}+r^{2}=R^{2} \\ & V=\pi r^{2} h \end{aligned}$
	Uses Pythagoras to connect $h, r$ and $R$	3.1a	M1	
	Eliminates the radius variable to form an expression for the volume of the cylinder in terms of $h$, completing argument to show given result. Condone undefined $r$	2.1	R1	$\begin{aligned} V & =\pi\left(R^{2}-h^{2}\right) h \\ & =\pi R^{2} h-\pi h^{3} \end{aligned}$
	Subtotal		3	
9(b)	Differentiates the expression for volume w.r.t. $h$ with at least one term correct.	3.1a	M1	$\frac{\mathrm{d} V}{\mathrm{~d} h}=\pi R^{2}-3 \pi h^{2}$
	$\text { Obtains correct } \frac{\mathrm{d} V}{\mathrm{~d} h}$	1.1b	A1	For maximum volume $\frac{\mathrm{d} V}{\mathrm{~d} h}=0$
	Explains that their derivative w.r.t $h$ equals zero for a maximum or stationary point	2.4	E1	$\begin{gathered} \Rightarrow R^{2}-3 h^{2}=0 \\ h^{2}=\frac{R^{2}}{\Rightarrow h} \Rightarrow=\frac{R}{r} \end{gathered}$
	Equates volume derivative w.r.t. $h$ to zero and correctly obtains a value for $h$ in terms of $R$	1.1a	M1	$h^{2}=\frac{R^{2}}{3} \Rightarrow h=\frac{R}{\sqrt{3}}$
	Substitutes their $h$, in terms of $R$, from derivative w.r.t. $h$ into volume formula.	1.1a	M1	Hence volume$\begin{aligned} V & =\pi R^{2} \frac{R}{\sqrt{3}}-\pi\left(\frac{R}{\sqrt{3}}\right) \\ & =\frac{2 \sqrt{3} \pi R^{3}}{9} \end{aligned}$
	Obtains the correct max volume in the form $k R^{3}-p R^{3}$ or better	3.2a	A1	
	Justifies correct volume in the form $k R^{3}-p R^{3}$ or better form is the maximum eg:	2.1	R1	
	- $\mathrm{V}=0$ when $\mathrm{h}=0$ or R and $V>0$ in between.   - Sketches shape of graph passing through the origin with (min on negative side) and max on positive side   - Obtains $\frac{\mathrm{d}^{2} V}{\mathrm{~d} h^{2}}=-6 \pi h<0$   NB R1 can be awarded even if E 1 is not awarded.			$\frac{\mathrm{d}^{2} V}{\mathrm{~d} h^{2}}=-6 \pi h$   When $h=\frac{R}{\sqrt{3}}$   $\frac{\mathrm{d}^{2} V}{\mathrm{~d} h^{2}}<0$ Therefore maximum


	Subtotal		7	
	Question Total		10	


Q	Marking Instructions	AO	Marks	Typical Solution
$\mathbf{1 0}$	Ticks correct box	1.2	B1	The resultant force acting on the   vehicle is zero
	Total		$\mathbf{1}$	


$\mathbf{Q}$	Marking Instructions	AO	Marks	Typical Solution
$\mathbf{1 1}$	Circles correct answer	1.1 b	B1	$\binom{-2}{2} \mathrm{~N}$
		Total		$\mathbf{1}$


$\mathbf{Q}$	Marking Instructions	AO	Marks	Typical Solution
$\mathbf{1 2}$	Circles correct answer	1.1 b	B1	-6
		Total		$\mathbf{1}$


Q	Marking Instructions	AO	Marks	Typical Solution
13(a)	Finds a moment of a force about any point.   Must have the form force x distance.   Can be awarded for example for 2w, 7w, 5R, 2R   Condone use of 9.8, 9.81, 10 instead of $g$	3.4	M1	$\begin{gathered} 2 W=1.5 \times 4 g \\ W=3 g \end{gathered}$
	$\begin{aligned} & \text { Obtains } w=3 g \\ & \text { CAO } \end{aligned}$	1.1b	A1	
	Subtotal		2	
13(b)	Explains that the weight of the rod acts through the midpoint or the centre of mass is at the midpoint (of the rod) OE	3.5a	E1	The rod is uniform so its weight acts at the centre
	Subtotal		1	
	Question Total		3	


Q	Marking Instructions	AO	Marks	Typical Solution
14(a)	Differentiates to find expression for $\mathbf{v}$ with at least one component correct	3.4	M1	$\mathbf{v}=\left(3 t^{2}-10 t\right) \mathbf{i}+(8-2 t) \mathbf{j}$
	Substitutes $t=2$ into their $\mathbf{v}$ which has at least one component correct.	1.1a	M1	So when $t=2$
	Uses correct process to find the magnitude of their expression for $\mathbf{v}$ provided both of their components are non-zero	1.1a	M1	$\text { Speed }=\|\mathbf{v}\|=\sqrt{8^{2}+4^{2}}$
	Obtains correct answer $4 \sqrt{5}$ ISW   ACF   CSO	1.1b	A1	$=4 \sqrt{5} \mathrm{~m} \mathrm{~s}^{-1}$
	Subtotal		4	
14(b)	Differentiates their vector $v$ to find expression for $\boldsymbol{a}$ with at least one component correct.   Do not award for $\mathbf{a}=\mathbf{r}$	3.4	M1	$\mathbf{a}=(6 t-10) \mathbf{i}-2 \mathbf{j}$
	Uses a valid explanation as to why the magnitude must be positive for all values of $t$   This could be earned by: forming a quadratic from acceleration components, allow sign error or Stating that the $\mathbf{j}$ component is always -2	2.4	E1	Since $\|\mathbf{a}\| \geq 2$ for any value of $t$ the magnitude of the acceleration is never zero   Therefore Bella's claim is correct.
	Deduces that $\|\mathbf{a}\| \geq 2$ OE or that Bella is correct or $\|\mathbf{a}\|>0$. Deduction must be from completely correct reasoning.	2.2a	R1	
	Subtotal		3	
	Question Total		7	


Q	Marking Instructions	AO	Marks	Typical Solution
15(a)	States strip width $h=20$   PI by correct y values and not contradicted.	1.1b	B1	$\begin{gathered} h=20 \\ y_{0}=131, y_{1}=140, \\ y_{2}=120, y_{3}=80, y_{4}=0 \end{gathered}$ $\begin{gathered} \text { Area }=\frac{h}{2}\left(y_{0}+2 y_{1}+2 y_{2}+2 y_{3}\right. \\ \left.+y_{4}\right) \end{gathered}$   Distance $=8110 \mathrm{~m}$
	States five $y$ values PI $\begin{gathered} y_{0}=131, y_{1}=140, \\ y_{2}=120, y_{3}=80, y_{4}=0 \end{gathered}$   If they use $\mathrm{h}=25$ condone $\begin{aligned} & y_{0}=6, y_{1}=135, y_{2}=134, \\ & y_{3}=94, y_{4}=0 \end{aligned}$   If they use five strips between $20<\mathrm{t}<100$ condone $\begin{aligned} & y_{0}=131, y_{1}=140, y_{2}=132 \\ & y_{3}=108, y_{4}=67, y_{5}=0 \end{aligned}$   Accept $\pm 2$ on all y values	1.1a	M1	
	Applies correct trapezium rule formula to their values (this mark could be achieved with BOM0 so far)	1.1a	M1	
	Applies trapezium rule with four strips and obtains correct value for distance. (accept values between 7970 m and less than 8250 m )	1.1a	A1	
	Subtotal		4	
15(b)	Explains means of gaining a more accurate estimate   For example, "integrate the quadratic between 20 and 100" Must include limits for integration. Or   Use the quadratic to calculate $y$ values in the trapezium rule or other appropriate numerical method.	2.4	E1	Integrates the quadratic between the limits 20 and 100.
	Subtotal		1	
	Question Total		5	


Q	Marking Instructions	AO	Marks	Typical Solution
16	Uses $s=u t+\frac{1}{2} a t^{2}$ for particle A   With $u=0 \mathrm{t}=5$ and $\mathrm{a}=\mathrm{g}$   ( g can be 9.89 .81 or 10 )	3.1b	M1	$\begin{gathered} s=u t+\frac{1}{2} a t^{2} \\ s=h, a=g, u=0 \text { and } t=5 \end{gathered}$
	Finds $h$ in terms of $g$ Condone use of g, 9.8, 9.81, or 10 Can achieve this mark for $h=12.5 g, 122.5,122.625,125$	1.1b	A1	$\begin{gathered} h=\frac{25}{2} g \\ k h=\frac{1}{2} g(5-t)^{2} \end{gathered}$
	Uses $k h=u t+\frac{1}{2} a t^{2}$ for particle B   With $\mathrm{u}=0$ and $\mathrm{a}=\mathrm{g}$   ( g can be 9.89 .81 , or 10 )	1.1a	M1	$\begin{gathered} \frac{25}{2} g k=\frac{1}{2} g(5-t)^{2} \\ 5 \sqrt{k}=5-t, \text { since } 0<\mathrm{t}<5 \end{gathered}$
	Deduces "time for B" + t = 5	3.3	B1	$t=5(1-\sqrt{k})$
	Eliminates h and completes reasoned argument to obtain $t=5(1-\sqrt{k})$   with consistent use of $g$ or value for g and no slips   AG	2.1	R1	
	Total		5	


Q	Marking Instructions	AO	Marks	Typical Solution
17	Models vertical motion using a suitable constant acceleration equation, to find the time of flight. Condone consistent sine/ cosine error	3.3	M1	Vertically: $\begin{gathered} 0=t \times u \sin \theta-0.5 \times g \times t^{2} \\ 2 u \sin \theta \end{gathered}$
	Obtains correct equation or inequality for $t$ Must use g not numerical value	1.1b	A1	$t=\bar{g}$   Horizontally:
	Models horizontal displacement Condone consistent sine/ cosine error	3.3	M1	$\begin{gathered} x=u t \cos \theta \\ x=u \frac{2 u \sin \theta}{g} \cos \theta, \end{gathered}$
	Obtains correct equation or inequality to model horizontal displacement	1.1b	A1	using $\sin 2 \theta=2 \sin \theta \cos \theta$ $u^{2} \sin 2 \theta$
	Eliminates $t$, where $t$ is time of flight, from their horizontal and vertical models to obtain an expression in terms of $\mathrm{u}, \mathrm{g}$ and $\theta$ only.	3.4	M1	Since $x \geq d$
	Completes reasoned argument to obtain stated result. Must justify stated inequality must have used correct resolution of $u$ throughout	2.1	R1	$\begin{aligned} & \frac{d g}{g} \geq d \\ & \sin 2 \theta \geq \frac{d g}{u^{2}} \end{aligned}$
	Total		6	


Q	Marking Instructions	AO	Marks	Typical Solution
18(a)	Uses $F=$ ma to form a four-term equation with at least three correct terms condone consistent swapping of sine/cosine	3.3	M1	$T-W \sin \theta-$ Friction $=m a$ $T-m g \sin \theta-\mu m g \cos \theta=m a$$\begin{aligned} T-0.2 g(0.28) & -0.2 \mu g(0.96) \\ & =0.2 \times \frac{543}{625} g \end{aligned}$
	Obtains perpendicular component of weight	3.1b	B1	
	Obtains parallel component of weight	3.1b	B1	$2 g-T=2 \times \frac{543}{625} g$
	Recalls $F=\mu R$	1.2	B1	
	Forms fully correct equation for particle $A$   $T-m g \sin \theta-\mu m g \cos \theta=m a$   Obtains M1, B1, B1, B1, A1	1.1b	A1	$\begin{array}{r} 2 g-0.2 g(0.28)-0.2 \mu g(0.96) \\ =2.2 \times \frac{543}{625} g \end{array}$
	Forms fully correct equation for particle $B$   $2 g-T=2 a$ or with acceleration substituted	3.3	B1	$\begin{gathered} 0.192 \mu=2-0.056-1.911(36) \\ \mu=0.17 \end{gathered}$
	Eliminates $T$ from their equations of motion with $a \neq 0$	3.4	M1	
	Shows at least one step leading to given $\mu$ value AWRT 0.170 If exact values used throughout with $\mathrm{g}=9.81$ then $\mu=0.17$ exactly	1.1b	A1	
	Subtotal		8	
18(b)(i)	Uses $F=$ ma with $T=0$ to form a three-term equation with at least two correct terms condone consistent sine/cosine error condone one sign error	3.4	M1	$\begin{aligned} &-0.2 \times 9.81 \times(0.28) \\ &-0.2(0.17) \times 9.81 \\ & \times(0.96)=0.2 a \end{aligned}$
	Obtains $\mathrm{a}=-4.347792$   AWRT -4.35	1.1b	A1	$a=-4.347792$
	Uses $v^{2}=u^{2}+2 a s$ with $u=0.5$ and $\mathrm{v}=0$ and their $a$ value   Do not accept the following values for $a$ $\begin{aligned} & a \neq 0, \frac{543}{625} g, 8.51424 \\ & a \neq 8.522928,8.688 \end{aligned}$	3.4	M1	$0=0.25-8.696 s$ $s=0.0288 \mathrm{~m}$
	Obtains 0.0288 m Must have units CAO	3.2a	A1	
	Subtotal		4	
18(b)(ii)	Describes assumption in context of part (b)(i) eg No air resistance, String does not obstruct block	3.5b	E1	$A$ does not reach the pulley before coming to rest
	Subtotal		1	
	Question Total		13	




[^0]:    Copyright information
    AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.
    Copyright © 2020 AQA and its licensors. All rights reserved.

