| Please check the examination details bel | ow before ente | ering your candidate information | |--|--------------------|----------------------------------| | Candidate surname | | Other names | | Centre Number Candidate No Pearson Edexcel Inter | | nal GCSE (9–1) | | Time 1 hour 15 minutes | Paper
reference | 4CH1/2C | | Chemistry | | 00 | | Unit: 4CH1 | | | | PAPER: 2C | | | | | | | | You must have:
Calculator, ruler | | Total Marks | ## **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. - Show all the steps in any calculations and state the units. ## Information - The total mark for this paper is 70. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. # **Advice** - Read each question carefully before you start to answer it. - Write your answers neatly and in good English. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ # The Periodic Table of the Elements | 0 4 H Helium | 20 Ne neon 10 | 40
Ar
argon
18 | 84
Kr
krypton
36 | 131
Xe
xenon
54 | [222]
Rn
radon
86 | fully | |---------------------|---|------------------------------------|-----------------------------------|-------------------------------------|--------------------------------------|---| | 7 | 19
F
fluorine
9 | 35.5
Cl
chlorine
17 | 80
Br
bromine
35 | 127
 | [210]
At
astatine
85 | Elements with atomic numbers 112–116 have been reported but not fully authenticated | | 9 | 16
O
oxygen
8 | 32
S
sulfur
16 | 79
Se
selenium
34 | 128
Te
tellurium
52 | [209] Po polonium 84 | ave been rep | | 5 | 14
N
nitrogen
7 | 31
P
phosphorus
15 | 75
As
arsenic
33 | 122
Sb
antimony
51 | 209
Bi
bismuth
83 | s 112–116 ha
authenticated | | 4 | 12
C
carbon
6 | 28
Si
silicon
14 | 73
Ge
gemanium
32 | Sn tin 50 | 207 Pb lead 82 | omic number | | က | 11
boron
5 | 27
AI
aluminium
13 | 70
Ga
gallium
31 | 115
In
indium
49 | 204
TI
thallium
81 | nents with atc | | | | | 65
Zn
zinc
30 | 112
Cd
cadmium
48 | 201
Hg
mercury
80 | Elen | | | | | 63.5
Cu
copper
29 | 108
Ag
silver
47 | 197
Au
gold
79 | Rg
roentgenium
111 | | | | | 59
Nickel
28 | 106
Pd
palladium
46 | 195
Pt
platinum
78 | [271] | | | | | 59
Co
cobatt
27 | 103
Rh
rhodium
45 | 192 Ir
Iridium
77 | [268] | | hydrogen | | | 56
Fe
iron
26 | 101
Ru
ruthenium
44 | 190
Os
osmium
76 | [277]
Hs
hassium
108 | | | | | 55
Mn
manganese
25 | [98] Tc technetium 43 | 186
Re
rhenium
75 | [264] Bh bohrium 107 | | | mass
bol
number | | 52
Cr
chromium
24 | 96
Mo
molybdenum
42 | 184
W
tungsten
74 | Sg
seaborgium
106 | | Key | relative atomic mass
atomic symbol
name
atomic (proton) number | | 51
V
vanadium
23 | 93
Nb
niobium
41 | 181
Ta
tantalum
73 | [262] Db dubnium 105 | | | relati
atc
atomic | | 48
Ti
titanium
22 | 91
Zr
zirconium
40 | 178
Hf
hafnium
72 | [261] Rf rutherfordium 104 | | | | | 45
Sc
scandium
21 | 89 ≺ yttrium yttrium 39 | 139
La*
lanthanum
57 | [227]
Ac*
actinium
89 | | 2 | 9 Be
beryllium | 24
Mg
magnesium
12 | 40
Ca
calcium
20 | 88
Sr
strontium
38 | 137
Ba
barium
56 | [226] Ra radium 88 | | ~ | 7
Li
lithium
3 | 23
Na
sodium
11 | 39
potassium
19 | 85
Rb
rubidium
37 | 133
Cs
caesium
55 | [223] Fr francium 87 | ^{*} The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number. **BLANK PAGE** # **Answer ALL questions.** Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . 1 This question is about the unsaturated hydrocarbon, ethene. The displayed formula of ethene is (a) (i) State the meaning of the term **hydrocarbon**. (2) (ii) Give the reason why ethene is described as unsaturated. (1) (b) Ethene is bubbled through bromine water until there is no further colour change. Which of these is the appearance of the solution formed? (1) - A colourless - B orange - C purple - lacksquare **D** red | (c) Ethanol is produced industrially by the reaction between ethene and steam. | | |--|-----| | The equation for the reaction is | | | $CH_2CH_2(g) + H_2O(g) \rightarrow CH_3CH_2OH(l)$ | | | (i) State the temperature and pressure used in this reaction. | (0) | | temperature | (2) | | temperature | | | pressure | | | pressure | | | (ii) Give the molecular formula of ethanol. | | (Total for Question 1 = 7 marks) (1) **2** This question is about gases in the air. The pie chart represents the percentages of gases in dry, unpolluted air. Gases with percentages of less than 1% in air are called trace gases. (a) (i) Which of these is gas Z? **A** hydrogen - **B** methane - C neon - **D** nitrogen - (ii) Which of these is the approximate percentage of oxygen in dry, unpolluted air? (1) (1) - A 0.04% - **■ B** 0.9% - **D** 35% 6 - (b) One of the trace gases is carbon dioxide. - (i) Identify **two** reactions that produce carbon dioxide by placing a tick (\checkmark) in two boxes. (2) | cracking an alkane | | |--|--| | complete combustion of an alkane | | | reaction between magnesium and hydrochloric acid | | | rusting of iron | | | thermal decomposition of copper(II) carbonate | | (ii) Name an environmental problem that is caused by the percentage of carbon dioxide increasing in the atmosphere. (1) (iii) Name the trace gas with the highest percentage in dry, unpolluted air. (1) (c) Rainwater is acidic because carbon dioxide dissolves in water to form carbonic acid. Acid rain is more acidic than rainwater because acidic pollutant gases also dissolve in water. (i) Give the name of the acid that forms when nitrogen dioxide dissolves in water. (1) (ii) Name another pollutant gas that also forms acid rain. (1) (Total for Question 2 = 8 marks) # **BLANK PAGE** - **3** This question is about solubility. - (a) The graph shows the solubilities of copper(II) chloride and sodium chloride at different temperatures. (i) Determine the temperature at which copper(II) chloride and sodium chloride have the same solubility. Show on the graph how you obtained your answer. (2) (ii) A saturated solution of copper(II) chloride in 100 g of water is cooled from 40 °C to 10 °C. Determine the mass, in grams, of copper(II) chloride that crystallises. (2) mass of copper(II) chloride =g - (b) A student uses this method to determine the solubility of potassium chloride in water at room temperature. - record the mass of an empty evaporating basin - pour some saturated potassium chloride solution into the evaporating basin - record the mass of the evaporating basin and saturated potassium chloride solution - heat the evaporating basin to remove all the water - record the mass of the evaporating basin and the dry potassium chloride The table shows the student's results. | | Mass in grams | |---|---------------| | evaporating basin | 58.1 | | evaporating basin and saturated potassium chloride solution | 78.2 | | evaporating basin and dry potassium chloride | 63.2 | | 1 | ï١ | Calculate the | mass of dry | notaccium | chlorida | ohtained | |---|------|---------------|--------------|-------------|----------|-----------| | ١ | . 17 | Calculate the | THUSS OF GLY | potassiaiii | CHIOHAC | obtaincu. | (1) (ii) Calculate the mass of water removed. (1) | (Total for Question 3 = 9 ma | ırks) | |---|---------------| | (iv) Suggest why the student's method is not suitable for determining the solubility of hydrated copper(II) sulfate. | (1) | | solubility = g per 1 | 00 g of water | | (iii) Calculate the solubility of potassium chloride in grams per 100 grams of water | (2) | - **4** This question is about the reactions of Group 1 metals with water. - (a) A teacher adds a piece of sodium to some water containing universal indicator. The equation for this reaction is $$2Na(s) + 2H_2O(l) \rightarrow 2NaOH(aq) + H_2(g)$$ The sodium floats on the surface of the water and the universal indicator changes colour because an alkaline solution is formed. (i) Give two other observations. (2) - 1______ - 2..... - (ii) Give the final colour of the universal indicator. (1) (b) The diagram represents an atom of lithium and an atom of sodium. lithium sodium (i) Give a reason why lithium and sodium have similar reactions with water. (1) (ii) Explain why lithium is less reactive than sodium. (3) (c) The teacher adds 0.150 g of lithium to an excess of water and collects the hydrogen gas produced. The equation for the reaction is $$2Li(s) + 2H_2O(l) \rightarrow 2LiOH(aq) + H_2(g)$$ The teacher collects 254 cm³ of hydrogen gas at room temperature and pressure (rtp). Show by calculation that 1 mol of hydrogen gas has a volume of approximately 24 000 cm³ at rtp. (4) (Total for Question 4 = 11 marks) **BLANK PAGE** **5** Hydrogen peroxide solution decomposes to give water and oxygen gas. The equation for this reaction is $$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$ (a) Three different solids are catalysts for the decomposition of hydrogen peroxide solution. A student is given hydrogen peroxide solution and a sample of each of the solid catalysts. The student has a timer, a measuring cylinder, a balance and the apparatus shown in the diagram. | > | | × | | | | | |----|---|----|----|----|----|--| | | | | 2 | á | | | | | | g | | 15 | | | | | ٦ | 79 | | Ŀ | o | | | | Ş | | S | 7 | | | | | | N | ľ | ч | ν | | | | ı | , | ۰ | ۰ | Ŋ | | | | ζ | - | G | à | c | | | 2 | | N | r | 7 | | | | ١ | 1 | | | | Ν, | | | | | ^> | ۷ | à | r | | | | i | ю | | г | | | | | 9 | 99 | | ĸ | ٨ | | | | | | | 7 | | | | | | × | 7 | 0 | | | | | | na | | | ſ. | | | 2 | 3 | | r | Я | ν | | | / | ì | Z | 7 | Z | | | | | į | = | • | 7 | γ | | | | | | | | | | | | | м | ĸ. | | | | | / | 3 | | | ы | ν | | | | Ì | v | | | | | | | | ĸ | ú | è | C | | | | | К | | | | | | ١. | | 7 | | | | | | | á | _ | 4 | 4 | 6 | | | | | z | | ۳ | | | | | | | L | a | ۵ | | | 7 | 5 | ヘ | 7 | ₹ | | | | ١ | 1 | = | = | × | Ν, | | | | | | | | | | | | 1 | ŭ | ₽ | G | υ | | | | | и | I. | л | К | | | | J | = | , | = | ν | | | | | K | | | | | | | | | | | ĸ | | | | ş | ĸ, | | | | | | / | ì | | | | Ν | | | | Š | 2 | 4 | à | C | | | | | | | ₹ | | | | | 1 | | | | ĸ | | | | à | ŝ. | Z | | | | | | 7 | z | | | | | | | 4 | | | | | | | 2 | ı | z | | | ν | | | | 9 | ₹ | 7 | | | | | | | | | | | | | | | ĸ | 2 | ۷ | ٥ | | | | | 12 | ٠ | 7 | ١. | | | | 2 | 2 | 2 | 7 | | | | | ì | ĸ. | 9 | | Ď | | | | | K2 | | 4 | ĸ | | | | j | -4 | ø | ۲ | | | | \ | | - | ь | ú | Ä | | | | | 2 | ø | ĸ | | | | | i | | ě | 6 | Ð | | | | ¢ | 7 | | 7 | | | | 2 | | ^ | 2 | | | | | | ì | e | , | | | | | | | D | | 1 | ĸ | | | | 3 | ×, | ė | ø | | | | ١, | | ×ã | ú | Z | | | | | í | rS | 7 | | 6 | | | | | ĸ | ۵ | | D | | | | ę | 7 | ۴ | 7 | ς. | | | | | | | | | | | | ς | | Í | | | | | |-------|---|---|-------------------|---|---|---|--| > | ς | > | | | Κ | | | 2 | | | ? | S | ζ | 5 | S | Σ | 2 | | | ζ | 8 | Š | K | ś | à | S | | | ? | | ì | K | É | ì | ß | | | ? | 5 | ì | K | í | ì | Ŕ | | | > | { | į | K | į | ì | ß | | | ? | 5 | į | K | į | 3 | ķ | | | ? | 5 | į | K | ĺ | 2 | Š | | | ? | | į | K | | 2 | | | | > | 5 | į | K | | } | | | | > | | | X
V | | 2 | | | | ? | | | KK | | 2 | | | | > | | | K | | 2 | | | | ? | | | XXXX | | | | | | > | | | X Y D V | | | | | | >>>> | | | | | 2 | | | | | | | | | | | | | >>>>> | | | X Y D Z Z Z | | | | | | | | | X Y D V V V V | | | | | | | | | X | | | | | | | | | X | | | | | | | | | X Y D Z Z Z Z Z | | | | | | | | | X Y D Z Z Z Z Z | | | | | | | | | ストレスシスクラン | | | | | | | 5 | į | くい レスシスクラン | | | | | | | 5 | į | くい ひとくとくべく | | | | | | | 5 | į | くい ひとくとくごく | | | | | | | 5 | į | | | | | | | | 5 | į | | | | | | | | 5 | į | くい ひとくとく シンプロ | | | | | | | | į | | | | | | | | 5 | į | くが ひとくとく シンプレス | | | | | | | 5 | į | | | | | | | | 5 | į | | | | | | | | 5 | į | | | | | | | | 5 | į | | | | | | | | 5 | į | | | | | | | | 5 | į | スド ひとくとく こくし ひくご | | | | | | | 5 | į | スド ひとくとく こくし ひくこと | | | | | | Describe a method the student could use to find which of the three solids is the most effective catalyst for the decomposition of hydrogen peroxide solution. | (5) | |---|-----| (b) The diagram shows the reaction profile for the decomposition of hydrogen peroxide without a catalyst. (i) Label the diagram to show the activation energy (E_a) and the enthalpy change (ΔH) for this reaction. (2) (ii) On the diagram, draw a curve to show the reaction profile for the same reaction when a catalyst is used. (1) (Total for Question 5 = 8 marks) **BLANK PAGE** - **6** This question is about the electrolysis of copper(II) sulfate solution. - (a) The diagram shows the apparatus used for the electrolysis. A student records the total increase in mass of the negative electrode every minute for 8 minutes. The table shows the results. | Time in minutes | Total increase in mass of the negative electrode in grams | |-----------------|---| | 0 | 0.00 | | 1 | 0.15 | | 2 | 0.27 | | 3 | 0.34 | | 4 | 0.39 | | 5 | 0.41 | | 6 | 0.42 | | 7 | 0.42 | | 8 | 0.42 | in grams (i) Plot the student's results. (1) (ii) Draw a curve of best fit. (1) (iii) Explain the shape of the graph. (2) - (b) The product at the positive electrode is oxygen gas. - (i) The student repeats the electrolysis using different apparatus. Describe how the student should collect a sample of pure oxygen at the positive electrode. (2) (ii) Give an ionic half-equation for the formation of oxygen. (2) (c) The wire used to connect the power supply to the electrodes is made of copper metal. The diagram shows the arrangement of the ions in a metal. (i) Metals that are malleable can also be stretched to form long, thin wires. Suggest why metals can be stretched to form wires. (2) (ii) Explain why metals conduct electricity. (2) (Total for Question 6 = 12 marks) **7** This question is about esters. Ester A reacts with water to form ethanoic acid and ethanol. The displayed formulae of the reactants and products are shown in this equation ester A The molar enthalpy change (ΔH) for the reaction is 0 kJ/mol. (a) (i) Draw a ring around the functional group in ester A. (1) (ii) Give the name of ester A. (1) (iii) Describe a chemical test, other than using an indicator, to show that the reaction mixture contains ethanoic acid. (2) (b) Explain why the molar enthalpy change (ΔH) for the reaction between ester A and water is 0 kJ/mol. In your answer, refer to the bonds broken and the bonds formed. (2) | (c) | A mixture of ester A and water is left in a sealed container until the reaction | |-----|---| | | mixture reaches dynamic equilibrium. | | (i) Describe what is meant by dynamic equilibrium | (i) | Describe | what is | meant k | b yc | ynamic | equilibrium | |---|-----|----------|---------|---------|------|--------|-------------| |---|-----|----------|---------|---------|------|--------|-------------| (2) (ii) Explain why adding a catalyst does not change the position of equilibrium. (2) (d) The ethanoic acid produced in the reaction is completely neutralised by 22.75 cm³ of 0.150 mol/dm³ barium hydroxide solution. The equation for the neutralisation reaction is $$2CH_3COOH + Ba(OH)_2 \rightarrow Ba(CH_3COO)_2 + 2H_2O$$ Calculate the amount, in moles, of ethanoic acid neutralised. Give your answer to 3 significant figures. (3) (e) The structures of two organic compounds are shown. These compounds react together to form a polymer. Give the repeat unit of the polymer formed. (2) (Total for Question 7 = 15 marks) **TOTAL FOR PAPER = 70 MARKS**