GCE

Chemistry A

Advanced Subsidiary GCE

Unit F321: Atoms, Bonds and Groups

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

1. Annotations

Annotation	Meaning
B0D	Benefit of doubt given
CON	Contradiction
*	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
\wedge	Omission mark
RE	Rounding error
SF	Error in number of significant figures
	Correct response
SEEN	Noted but no credit given
REP	Repeat

2. Subject-specific Marking Instructions

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

All questions must be annotated with a tick where the mark is given.
Additional pages/objects: You must annotate the additional pages (before Question 1) and the additional objects for each script you mark. If no credit is to be awarded for the additional object, please use a suitable annotation (either ^ or SEEN).

The following questions should be fully annotated with ticks, crosses and other relevant annotations to show where marks have been awarded in the body of the text:
3ai
4a
5ai

Question			Answer	Marks	Guidance
1	(a)	(i)	Mass of the isotope compared to $1 / 12$ th OR mass of the atom compared to $1 / 12$ th \checkmark (the mass of an atom of) ${ }^{12} \mathrm{C} \checkmark$	2	ALLOW for ${ }^{12} \mathrm{C}$: carbon-12 OR C-12 OR C 12 OR 12C ALLOW mass of a mole of the isotope OR mass of a mole of atoms compared to $1 / 12$ th the mass of mole or $12 \mathbf{g}$ of ${ }^{12} \mathrm{C}$ for two marks ALLOW mass of the isotope or mass of the atom compared to ${ }^{12} \mathrm{C}$ which has a mass of $12(.0)$ for two marks ALLOW one mark for responses which have individual atoms compared to one mole of 12C and vice versa eg mass of the isotope or mass of the atom compared to ${ }^{12} \mathrm{C}$ which has a mass of $12(.0) \mathbf{g}$ eg mass of an atom compared to 1/12th mass of one mole of ${ }^{12} \mathrm{C}$ eg mass of one mole of atoms compared to $1 / 12$ th the mass of an atom of 12C ALLOW 2 marks for responses expressed as a fraction eg mass of the isotope $\quad{ }^{12} \mathrm{C}$ IGNORE (weighted) mean OR average DO NOT ALLOW mass of element or mass of ion
		(ii)	$\begin{aligned} & \text { 19p and } 20 \mathrm{n} \checkmark \\ & { }^{41} \mathrm{~K}^{+} \text {and } 19 \mathrm{p} \checkmark \end{aligned}$	2	Mark by row ALLOW 41K+
	(b)		$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2} \checkmark$	1	ALLOW $1 \mathrm{~s}^{2}$ repeated ALLOW subscripts AND upper case etc

Question			Answer	Marks	Guidance
1	(c)	(i)	First check the answer on the answer line. If answer $=3.01 \times 10^{22}$ award 3 marks $170.1 \checkmark$ (ALLOW in working shown as $28.1+35.5 \times 4$) Correctly calculates amount of molecules $8.505 / 170.1=0.05(00) \mathrm{mol} \checkmark$ Correctly calculates number of molecules $0.05 \times 6.02 \times 10^{23}=3.01 \times 10^{22}$	3	ALLOW 0.301×10^{23} for three marks If there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW ECF from incorrect molar mass of SiCl_{4} ALLOW 0.05(00) (mol) for two marks ALLOW ECF for incorrect number of mol of SiC_{4} ALLOW calculator value or rounding to 3 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2 . DO NOT ALLOW any marks for: $8.505 \times 6.02 \times 10^{23}=5.12 \times 10^{24}$
		(ii)	4 K and 4 Cl correctly arranged \checkmark $4 \mathrm{~K}^{+}$and $4 \mathrm{C}\ulcorner$ correctly arranged \checkmark	2	ALLOW the structure with ALL Cl^{-}and K^{+}transposed ALLOW labels if seen outside circles but linked with an arrow
			Total	10	

Question			Answer	Marks	Guidance
2	(a)	(i)	$\begin{aligned} & \mathrm{Al}^{3+} \checkmark \\ & \mathrm{SO}_{4}{ }^{2-} \checkmark \end{aligned}$	2	
		(ii)	$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ Correct species AND correctly balanced state symbols on correct species \checkmark	2	ALLOW multiples
		(iii)	(The number of) water(s) of crystallisation \checkmark	1	IGNORE hydrated OR hydrous OR 'contains water'
		(iv)	First check the answer on the answer line. If answer = 16, award 3 marks Correctly calculates amount of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$: $6.846 / 342.3=0.02(00) \mathrm{mol} \downarrow$ Correctly calculates amount of $\mathrm{H}_{2} \mathrm{O}$: $5.760 / 18.0=0.32(0) \mathrm{mol}$ Correctly calculates whole number ratio of mol of $\mathrm{H}_{2} \mathrm{O}$: $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ to give $x=16$	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW as ECF from 12.606/342.3 $=0.0368(273)$ AND 0.32/0.0368(273) To give $\boldsymbol{x}=9$ for two marks ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2. ALLOW ECF for calculation of correctly rounded whole number value of $\mathrm{H}_{2} \mathrm{O}$ from incorrect mol of $\mathrm{H}_{2} \mathrm{O}$ and / or incorrect mol of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ BUT x must be a whole number ALLOW alternative method Mol of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$: $6.846 / 342.3=0.02(00) \mathrm{mol}$ (first mark) Molar mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \times \mathrm{XH}_{2} \mathrm{O}$: $12.606 / 0.02(00)=630.3 \mathrm{~g} \mathrm{~mol}^{-1}$ (second mark) Mass of water per mol $=630.3-342.3=288$ AND 288/18 to give $x=16$ (third mark)

Question			Answer	Marks	Guidance
3	(a)	(ii)	First check the answer on the answer line. If answer = $360\left(\mathrm{~cm}^{3}\right)$ award 2 marks Correctly calculates amount of $\mathrm{P}_{4}=1.86 / 124.0$ $=0.015(0) \mathrm{mol}$ Correctly calculates volume of $\mathrm{PH}_{3}=0.015(0) \times 24000=$ $360\left(\mathrm{~cm}^{3}\right)^{\checkmark}$	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECF for wrong amount of $\mathrm{P}_{4} \times 24000$ for second mark ALLOW one mark for $(1.86 / 31.0) \times 24000=1440$ DO NOT ALLOW $2^{\text {nd }}$ mark for $1.86 \times 24000=44640$ ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2 .
	(b)		$4 \mathrm{PH}_{3}+8 \mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW correct multiples IGNORE state symbols
	(c)	(i)	The hydrogen ions OR H^{+}OR protons (of phosphoric acid) are replaced by sodium ions OR $\mathrm{Na}^{+} \checkmark$	1	ALLOW Na ions OR positive ions replace H ions OR metal ions have replaced hydrogen ions OR protons DO NOT ALLOW Na replaces H . lons are key in either word or symbol form. DO NOT ALLOW incorrect charge on Na ions (eg Na^{2+})
		(ii)	$\begin{aligned} & \text { Correctly calculates } 0.100 \times 15 / 1000 \\ & =1.5(0) \times 10^{-3} \mathbf{O R} 0.0015(0) \checkmark \end{aligned}$	1	
		(iii)	$22.5 \checkmark$	1	ALLOW ECF from (ii) Answer from (ii) $\times(3 / 0.2) \times 1000$
	(d)	(i)	hydrogen bonding \checkmark Permanent dipole(-dipole interactions) \checkmark	2	

Question			Answer	Marks	Guidance
3	(d)	(ii)	the intermolecular forces are weaker in $\mathrm{PH}_{3} \checkmark$	1	ALLOW the energy needed to overcome the intermolecular forces in NH_{3} is greater Check table in part (i) IF NH_{3} = hydrogen bonds AND $\mathrm{PH}_{3}=$ permanent dipoles $\mathbf{O R}$ van der Waal's forces; ALLOW 'Hydrogen Bonds are stronger' ORA IF $\mathrm{NH}_{3}=$ permanent dipoles AND $\mathrm{PH}_{3}=$ van der Waal's forces; ALLOW 'permanent dipoles are stronger' ORA IF $\mathrm{NH}_{3}=$ permanent dipoles AND $\mathrm{PH}_{3}=$ permanent dipoles; ALLOW 'permanent dipoles are stronger in $\mathbf{N H}_{3}$ ' ORA DO NOT ALLOW PH_{3} has weaker vdW's than NH_{3} DO NOT ALLOW NH 3 has stronger hydrogen bonds than PH_{3} DO NOT ALLOW implication that covalent bonds are broken
	(e)	(i)	Both electrons have been donated by one atom \checkmark	1	ALLOW 'they' for electrons IGNORE elements for atom DO NOT ALLOW 'transfer' in place of 'donated' DO NOT ALLOW more than one electron pair is donated

Question			Answer	Marks	Guidance
3	(e)	(ii)	Correct 'dot-and-cross' arrangement of B covalently 'dot-and-cross' bonded to three F atoms, including full octet on F atoms AND Correct 'dot-and-cross' arrangement of N covalently 'dot-and-cross' bonded to three H atoms \checkmark Dative covalent shown between N and B atoms \checkmark	2	Must be 'dot-and-cross', but ALLOW other symbols for electrons of third and fourth atoms eg $\Delta,+, o$, etc Circles for outer shells are not needed IGNORE inner shells IGNORE use of charges Non-bonding electrons of F do not need to be seen as pairs IGNORE dative-covalent arrows from N to B , but DO NOT ALLOW arrow from B to N DO NOT ALLOW two separate molecules for first mark DO NOT ALLOW dative covalent bond mark if electron pair matches the B electrons ie to be correct the dative pair must be the same symbol as non-bonding electrons on F atoms if only two symbols are used DO NOT ALLOW dative covalent bond mark if F atoms have no non-bonding electrons UNLESS B has different electron symbol to N or H atoms
		(iii)	$\begin{aligned} & \mathrm{BF}_{3}=120\left({ }^{\circ}\right) \checkmark \\ & \mathrm{H}_{3} \mathrm{NBF}_{3}=109.5\left(^{\circ}\right) \end{aligned}$	2	ALLOW 109-110(${ }^{\circ}$) for $\mathrm{H}_{3} \mathrm{NBF}_{3}$

Question			Answer	Marks	Guidance
3	(e)	(iv)	(N in) NH_{3} has three bonding pairs and one lone pair of electrons (N in) $\mathrm{H}_{3} \mathrm{NBF}_{3}$ has four bonding pairs (and no lone pairs) of electrons OR Lone pair on N now becomes bonding pair \checkmark Lone pair of electrons repels more than bonding pairs \checkmark	3	ALLOW 'bonds' for 'bonding pairs' IGNORE ‘electrons repel' DO NOT ALLOW 'atoms repel'
			Total	20	

	uest	Answer	Marks	Guidance
4	(a)	Reactivity increases (down the group) \checkmark Increasing size mark Atomic radius increases OR There are more shells Increased shielding mark There is more shielding \checkmark Nuclear attraction (to electron) mark Nuclear attraction (to electron) decreases OR (outermost) electrons experience less attraction (to nucleus) OR Increased nuclear charge is outweighed by increased shielding/distance \checkmark Ease of electron loss mark Easier to remove (outer) electron(s) OR Ionisation energy decreases \checkmark Quality of written communication electron(s) OR ionisation OR ionization OR oxidise OR oxidize spelled correctly at least once for last marking point	5	FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED 'Down the group' is not required ORA throughout ALLOW alternative phrases for 'reactivity increases' ALLOW 'there are more energy levels' ALLOW 'electrons are in higher energy levels' ALLOW 'electrons are further from the nucleus' IGNORE there are more orbitals OR more sub-shells ALLOW 'different shell' OR 'new shell' There must be clear comparison ie 'more shielding' OR 'increased shielding' ALLOW there is more electron repulsion from inner shells DO NOT ALLOW responses which have no comparative eg 'there is shielding' ALLOW 'there is less nuclear pull' OR 'electrons less tightly held' IGNORE there is less effective nuclear charge IGNORE 'nuclear charge' for 'nuclear attraction' If question is answered in terms of only Group 7, then ONLY marks 2, 3 and 4 can be awarded ALLOW easier to oxidise

Question			Answer		Marks	Guidance
4	(b)	(i)	$\mathrm{AgNO}_{3}(\mathrm{aq}) \mathrm{OR}$ silver nitrate $\mathbf{O R} \mathrm{AgNO}_{3} \checkmark$		1	ALLOW Ag ${ }^{+}$(aq)
		(ii)	Yellow AND precipitate \checkmark		1	ALLOW shades of yellow but not creamy yellow ALLOW ppt or solid for precipitate
		(iii)	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{Agl}(\mathrm{s}) \checkmark$		1	ALLOW correct multiples
		(iv)	concentrated (aqueous) $\mathrm{NH}_{3} \checkmark$		1	
				Total	9	

Question			Answer	Marks	Guidance
5	(a)	(i)	Nuclear charge mark (Across the period) number of protons increases OR greater nuclear charge \checkmark Quality of written communication - nuclear OR proton(s) OR nucleus spelled correctly ONCE for the first marking point Distance / shielding mark (Outermost) electrons are in the same shell OR (Outermost) electrons experience the same shielding OR Atomic radius decreases \checkmark Nuclear attraction (to electron) mark Greater nuclear attraction (on outermost electrons) OR (outer) electrons are attracted more strongly (to the nucleus) \checkmark	3	FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED Comparison should be used for each mark IGNORE atomic number increases, but ALLOW proton number increases IGNORE nucleus gets bigger IGNORE 'effective nuclear charge increases' DO NOT ALLOW 'charge' increases without reference to nuclear ALLOW shielding is similar BUT IGNORE 'there is shielding' DO NOT ALLOW sub-shells OR orbitals ALLOW greater nuclear pull for greater nuclear attraction DO NOT ALLOW use of greater nuclear charge for greater nuclear attraction for third mark
		(ii)	(Diamond and graphite form) gaseous atoms (of carbon when they are ionised) \checkmark	1	ALLOW the atoms are in the gaseous state

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

