

Chemistry A

Advanced Subsidiary GCE

Unit F321: Atoms, Bonds and Groups

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

1. Annotations

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
РОТ	Power of 10 error
^	Omission mark
RE	Rounding error
SF	Error in number of significant figures
✓	Correct response
SEEN	Noted but no credit given
REP	Repeat

2. Subject-specific Marking Instructions

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

All questions must be annotated with a tick where the mark is given.

Additional pages/objects: You **must** annotate the additional pages (before Question 1) and the additional objects for each script you mark. If no credit is to be awarded for the additional object, please use a suitable annotation (either ^ or SEEN).

The following questions should be fully annotated with ticks, crosses and other relevant annotations to show where marks have been awarded in the body of the text:

3ai

4a

5ai

Q	Question		Answer	Marks	Guidance
1	(a)	(i)	Mass of the isotope compared to 1/12th OR mass of the atom compared to 1/12th ✓ (the mass of an atom of) ¹² C ✓	2	 ALLOW for ¹²C: carbon-12 OR C-12 OR C 12 OR 12C ALLOW mass of a mole of the isotope OR mass of a mole of atoms compared to 1/12th the mass of mole or 12 g of ¹²C for two marks ALLOW mass of the isotope or mass of the atom compared to ¹²C which has a mass of 12(.0) for two marks ALLOW one mark for responses which have individual atoms compared to one mole of 12C and vice versa eg mass of the isotope or mass of the atom compared to ¹²C which has a mass of 12(.0) g eg mass of an atom compared to 1/12th mass of one mole of ¹²C eg mass of one mole of atoms compared to 1/12th the mass of an atom of 12C ALLOW 2 marks for responses expressed as a fraction eg mass of the isotope mass of 1/12th mass of ¹²C IGNORE (weighted) mean OR average DO NOT ALLOW mass of element or mass of ion
		(ii)	19p and 20n ✓ ⁴¹ K⁺ and 19p ✓	2	Mark by row ALLOW 41K+
	(b)		(1s ²) 2s ² 2p ⁶ 3s ² 3p ² ✓	1	ALLOW 1s ² repeated ALLOW subscripts AND upper case etc

Q	uesti	on	Answer	Marks	Guidance
1	(c)	(i)	First check the answer on the answer line. If answer = 3.01×10^{22} award 3 marks $170.1 \checkmark$ (ALLOW in working shown as $28.1 + 35.5 \times 4$) Correctly calculates amount of molecules $8.505 / 170.1 = 0.05(00) \text{ mol } \checkmark$ Correctly calculates number of molecules $0.05 \times 6.02 \times 10^{23} = 3.01 \times 10^{22} \checkmark$	3	ALLOW 0.301 x 10^{23} for three marks If there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW ECF from incorrect molar mass of SiC/ ₄ ALLOW 0.05(00) (mol) for two marks ALLOW ECF for incorrect number of mol of SiC/ ₄ ALLOW calculator value or rounding to 3 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2. DO NOT ALLOW any marks for: 8.505 x 6.02 x 10^{23} = 5.12 x 10^{24}
		(ii)	$\begin{array}{c} \hline Cl^{-} \\ \hline K^{+} \\ \hline Cl^{-} \\ \hline K^{+} \\ \hline Cl^{-} \\ \hline K^{+} \\ \hline Cl^{-} \\ \hline Cl^{-} \\ \hline K^{+} \\ \hline Cl^{-} \\ \hline Cl^{-}$	2	ALLOW the structure with ALL Cl^{-} and K^{+} transposed ALLOW labels if seen outside circles but linked with an arrow eg K^{+}
			Total	10	

C	uesti	on	Answer	Marks	Guidance
2	(a)	(i)	$AI^{3+} \checkmark$ $SO_4^{2-} \checkmark$	2	
		(ii)	$AI_2O_3(s) + 3H_2SO_4(aq) \rightarrow AI_2(SO_4)_3(aq) + 3H_2O(I)$ Correct species AND correctly balanced \checkmark state symbols on correct species \checkmark	2	ALLOW multiples
		(iii)	(The number of) water(s) of crystallisation ✓	1	IGNORE hydrated OR hydrous OR 'contains water'
		(iv)	First check the answer on the answer line. If answer = 16, award 3 marks Correctly calculates amount of $Al_2(SO_4)_3$: $6.846 / 342.3 = 0.02(00) \text{ mol } \checkmark$ Correctly calculates amount of H_2O : $5.760 / 18.0 = 0.32(0) \text{ mol } \checkmark$ Correctly calculates whole number ratio of mol of H_2O : $Al_2(SO_4)_3$ to give $\mathbf{x} = 16 \checkmark$	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW as ECF from 12.606/342.3 = 0.0368(273) AND 0.32/0.0368(273) To give $\mathbf{x} = 9$ for two marks ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2. ALLOW ECF for calculation of correctly rounded whole number value of H ₂ O from incorrect mol of H ₂ O and / or incorrect mol of Al ₂ (SO ₄) ₃ BUT \mathbf{x} must be a whole number ALLOW alternative method Mol of Al ₂ (SO ₄) ₃ : 6.846 / 342.3 = 0.02(00) mol (first mark) Molar mass of Al ₂ (SO ₄) ₃ • \mathbf{x} H ₂ O: 12.606 / 0.02(00) = 630.3 g mol ⁻¹ (second mark) Mass of water per mol = 630.3 – 342.3 = 288 AND 288/18 to give $\mathbf{x} = 16$ (third mark)

Q	uesti	on	Answer	Marks	Guidance
2	uesti (b)	on (i)	Answer $Cl_2 + H_2O \rightarrow HCl + HClO \checkmark$ H ⁺ ions are released OR HCl is acidic OR HClO is acidic ✓	Marks 2	Guidance ALLOW HOC/ ALLOW equilibrium sign IGNORE state symbols ALLOW formulae OR names <i>If correct equation is seen:</i> ALLOW 'product is acidic' OR 'acid is produced' IGNORE 'the solution is acidic' but ALLOW 'the solution formed is acidic' DO NOT ALLOW 'chlorine is acidic' ie acidity must be related to the product(s) <i>If an incorrect equation is seen:</i>
		(ii)	C/O ⁻ √	1	ALLOW second mark if H ⁺ OR HC <i>l</i> OR HC <i>l</i> O is given as a product in the equation AND is stated as being acidic <i>If no equation is seen:</i> ALLOW second mark if H ⁺ OR HC <i>l</i> OR HC <i>l</i> O is produced AND is stated as being acidic ALLOW OC <i>l</i> ⁻
			Total	11	

3(i)3FULL ANNOTATIONS WITH TICKS, CROSSES, COI MUST BE USED3P in P4 is 0 AND in PH3 is -3 AND in NaH2PO2 is (+)1 3ALLOW oxidation states written above the equation if seen in the text BUT IGNORE oxidation states written the equation if seen in the text BUT IGNORE oxidation states written
Phosphorus has been oxidised (from 0) to +1✓ Phosphorus has been reduced (from 0) to -3 ✓ ALLOW Por P₄ for phosphide or phosphine or phosphine or phosphine or phosphine or phosphine or phosphorus ALLOW ECF for the second and third marks if ONE in oxidation number is assigned but directional changes a correct eg P = 0 and -3 and +2 instead of 0 and -3 an IGNORE references to electron loss / gain If correct oxidation numbers are seen ALLOW second third marking points for: 'Phosphorus is oxidised to form NaH₂PO₂' AND 'Phosphorus has been awarded ALLOW for ONE mark: Phosphorus is oxidation number has increased and decreased

Q	uesti	on	Answer	Marks	Guidance
3	(a)	(ii)	First check the answer on the answer line. If answer = 360 (cm^3) award 2 marks Correctly calculates amount of P ₄ = $1.86/124.0$ = $0.015(0) \text{ mol } \checkmark$	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below
			Correctly calculates volume of $PH_3 = 0.015(0) \times 24000 = 360 \text{ (cm}^3) \checkmark$		ALLOW ECF for wrong amount of $P_4 \times 24000$ for second mark ALLOW one mark for (1.86/31.0) x 24000 = 1440 DO NOT ALLOW 2 nd mark for 1.86 x 24000 = 44640
					or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2.
	(b)		$4PH_3 + 8O_2 \rightarrow P_4O_{10} + 6H_2O \checkmark$	1	ALLOW correct multiples IGNORE state symbols
	(c)	(i)	The hydrogen ions OR H ⁺ OR protons (of phosphoric acid) are replaced by sodium ions OR Na ⁺ ✓	1	 ALLOW Na ions OR positive ions replace H ions OR metal ions have replaced hydrogen ions OR protons DO NOT ALLOW Na replaces H. Ions are key in either word or symbol form. DO NOT ALLOW incorrect charge on Na ions (eg Na²⁺)
		(ii)	Correctly calculates 0.100 x 15 / 1000 = 1.5(0) x 10 ⁻³ OR 0.0015(0) ✓	1	
		(iii)	22.5 ✓	1	ALLOW ECF from (ii) Answer from (ii) x (3/0.2) x 1000
	(d)	(i)	hydrogen bonding ✓ Permanent dipole(–dipole interactions) ✓	2	

Q	uesti	on	Answer	Marks	Guidance
3	(d)	(ii)	the intermolecular forces are weaker in PH ₃ ✓	1	 ALLOW the energy needed to overcome the intermolecular forces in NH₃ is greater Check table in part (i) IF NH₃ = hydrogen bonds AND PH₃ = permanent dipoles OR van der Waal's forces; ALLOW 'Hydrogen Bonds are stronger' ORA IF NH₃ = permanent dipoles AND PH₃ = van der Waal's forces; ALLOW 'permanent dipoles are stronger' ORA IF NH₃ = permanent dipoles AND PH₃ = permanent dipoles; ALLOW 'permanent dipoles are stronger in NH₃' ORA IF NH₃ = permanent dipoles are stronger in NH₃' ORA IF NH₃ = permanent dipoles are stronger in NH₃' ORA DO NOT ALLOW PH₃ has weaker vdW's than NH₃ DO NOT ALLOW NH₃ has stronger hydrogen bonds than PH₃ DO NOT ALLOW implication that covalent bonds are broken
	(e)	(i)	Both electrons have been donated by one atom ✓	1	ALLOW 'they' for electrons IGNORE elements for atom DO NOT ALLOW 'transfer' in place of 'donated' DO NOT ALLOW more than one electron pair is donated

ti	on	
	/::)	

Q	Question		Answer	Marks	Guidance
3	(e)	(ii)	H • F • • • • • • • • • • • • • • • • •	2	 Must be 'dot-and-cross', but ALLOW other symbols for electrons of third and fourth atoms eg Δ, +, o, etc Circles for outer shells are not needed IGNORE inner shells IGNORE use of charges Non-bonding electrons of F do not need to be seen as pairs IGNORE dative-covalent arrows from N to B, but DO NOT ALLOW arrow from B to N DO NOT ALLOW two separate molecules for first mark DO NOT ALLOW dative covalent bond mark if electron pair matches the B electrons ie to be correct the dative pair must be the same symbol as non-bonding electrons on F atoms if only two symbols are used DO NOT ALLOW dative covalent bond mark if F atoms have no non-bonding electrons UNLESS B has different electron symbol to N or H atoms
		(iii)	$BF_3 = 120(\circ) \checkmark$ $H_3NBF_3 = 109.5(\circ) \checkmark$	2	ALLOW 109–110(°) for H ₃ NBF ₃

Question		on	Answer	Marks	Guidance
3	(e)	(iv)	(N in) NH ₃ has three bonding pairs and one lone pair of electrons \checkmark	3	ALLOW 'bonds' for 'bonding pairs'
			 (N in) H₃NBF₃ has four bonding pairs (and no lone pairs) of electrons OR Lone pair on N now becomes bonding pair ✓ 		
			Lone pair of electrons repels more than bonding pairs \checkmark		IGNORE 'electrons repel' DO NOT ALLOW 'atoms repel'
			Total	20	

Question		on	Answer	Marks	Guidance		
4	(a)			5	FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED		
					'Down the group' is not required		
					ORA throughout		
			Reactivity increases (down the group) \checkmark		ALLOW alternative phrases for 'reactivity increases'		
			Increasing size mark		ALLOW 'there are more energy levels'		
			Atomic radius increases		ALLOW 'electrons are in higher energy levels'		
			OR		ALLOW 'electrons are further from the nucleus'		
			There are more shells ✓		IGNORE there are more orbitals OR more sub-shells		
					ALLOW 'different shell' OR 'new shell'		
			Increased shielding mark		There must be clear comparison is 'more chielding' OB		
					increased shielding'		
					AI I OW there is more electron repulsion from inner shells		
					DO NOT ALLOW responses which have no comparative eq		
					'there is shielding'		
			Nuclear attraction (to electron) mark				
			Nuclear attraction (to electron) decreases OR		ALLOW 'there is less nuclear pull' OR 'electrons less tightly held'		
			(outermost) electrons experience less attraction (to		IGNORE there is less effective nuclear charge		
			nucleus)		IGNORE 'nuclear charge' for 'nuclear attraction'		
			Increased nuclear charge is outweighed by increased		If question is answered in terms of only Group 7, then ONLY		
					marks 2, 5 and 4 can be awarded		
			Ease of electron loss mark				
			Easier to remove (outer) electron(s)		ALLOW easier to oxidise		
			OR				
			Ionisation energy decreases ✓				
			Quality of written communication electron(s) OR				
			ionisation OR ionization OR oxidise OR oxidize spelled				
			correctly at least once for last marking point				

Question			Answer		Guidance	
4	(b)	(i)	AgNO ₃ (aq) OR silver nitrate OR AgNO ₃ ✓	1	ALLOW Ag⁺(aq)	
		(ii)	Yellow AND precipitate ✓	1	ALLOW shades of yellow but not creamy yellow ALLOW ppt or solid for precipitate	
		(iii)	$Ag^{+}(aq) + I^{-}(aq) \rightarrow AgI(s) \checkmark$	1	ALLOW correct multiples	
		(iv)	concentrated (aqueous) NH ₃ ✓	1		
			Total	9		

Question		on	Answer	Marks	Guidance	
5	(a)	(i)	Nuclear charge mark	3	FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED	
			(Across the period) number of protons increases OR		Comparison should be used for each mark	
			greater nuclear charge ✓		IGNORE atomic number increases, but ALLOW proton number increases	
			Quality of written communication – nuclear OR proton(s) OR nucleus spelled correctly ONCE for the first marking point		IGNORE nucleus gets bigger IGNORE 'effective nuclear charge increases' DO NOT ALLOW 'charge' increases without reference to	
			Distance / shielding mark		nuclear	
			(Outermost) electrons are in the same shell OR (Outermost) electrons experience the same shielding			
			OR Atomic radius decreases ✓		ALLOW shielding is similar BUT IGNORE 'there is shielding' DO NOT ALLOW sub-shells OR orbitals	
			<i>Nuclear attraction (to electron) mark</i> Greater nuclear attraction (on outermost electrons)			
			OR (outer) electrons are attracted more strongly (to the nucleus) ✓		ALLOW greater nuclear pull for greater nuclear attraction DO NOT ALLOW use of greater nuclear charge for greater nuclear attraction for third mark	
		(ii)	(Diamond and graphite form) gaseous atoms (of carbon when they are ionised) \checkmark	1	ALLOW the atoms are in the gaseous state	

Question	Answer				Marks	Guidance
(b)		Lithium	Carbon (diamond)	Fluorine	6	ALLOW shared pair of electrons for covalent (bond)
	Structure	Giant	Giant √	Simple		 ALLOW vdw for van der Waals' ALLOW temporary–induced or instantaneous–induced for van der Waals' ALLOW Positive ions for Li⁺ ions IGNORE 'Lithium ions' but ALLOW 'Positive lithium ions' DO NOT ALLOW Li²⁺
	Force or bond overcome on melting	Metallic bond	Covalent (bond) ✓	van der Waals' (forces) OR induced dipoles ✓		
	Particles between which the force or bond is acting	Li ⁺ ions and (delocalised) electrons ✓	Atoms ✓	Molecules ✓		IGNORE C and IGNORE F ₂ IGNORE diagrams but ALLOW names of particles if seen as a label on a diagram DO NOT ALLOW implication that covalent bonds are broken in fluoring for the particles mark of fluoring as this implies the
				particles are atoms		
				Total	10	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

