

GCE

Chemistry A

Unit F322: Chains, Energy and Resources

Advanced Subsidiary GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2016

Annotations

Meaning
Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or
unstructured) and on each page of an additional object where there is no candidate response.
Benefit of doubt given
Contradiction
Incorrect response
Error carried forward
Ignore
Not answered question
Benefit of doubt not given
Power of 10 error
Omission mark
Rounding error
Error in number of significant figures
Correct response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Meaning
Answers which are not worthy of credit
Statements which are irrelevant
Answers that can be accepted
Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
Error carried forward
Alternative wording
Or reverse argument

The following questions should be marked using **ALL** appropriate annotations to show where marks have been awarded in the body of the text: 1(b)(iii), 2(c), 2(d), 2e(ii), 3(a)(i), 3(b)(ii), 3(c)(ii),

4(b), 4(c)(i), 4(c)(ii)

5(b), 5(e) 7(a), 7b(i), 7b(ii)

All questions where an ECF has been applied.

Checking additional pages

All the Additional Pages in the examination script must be checked to see if any candidates include any answers.

When you open question **1(a)** you will see a view of page 24 one of the Additional Pages. If the page is blank then, using the marking mode, annotate the page with the BP annotation You may need to contact your Team Leader if you do not know how to do this.

Generic comments

ORGANIC STRUCTURES

For a 'structure' or 'structural formula', ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)

For an alkyl group shown within a structure, **ALLOW** bond drawn to C or H, e.g. **ALLOW** CH₃–, CH₂–, C₃H₇–, etc **ALLOW** vertical 'bond' to any part of an alkyl group

For an OH group shown within a structure, **DO NOT ALLOW** formula with horizontal —HO **OR** OH – **ALLOW** vertical 'bond' to any part of the OH group

For a CHO group shown within a structure, **DO NOT ALLOW** COH

For a 3D structure,

• For bond in the plane of paper, a solid line is expected:	
• For bond out of plane of paper, a solid wedge is expected:	
For bond into plane of paper, ALLOW:	
ALLOW a hollow wedge for 'in bond' OR an 'out bond', provided it is different from the other in or out wedge e.g.:	

NAMES

Names including alkyl groups: ALLOW alkanyl, e.g. ethanyl (i.e. IGNORE 'an') DO NOT ALLOW alkol, e.g. ethol (ie 'an' is essential)

Names of esters: Two words are expected, e.g. ethyl ethanoate **ALLOW** one word, e.g. ethylethanoate

Names with multiple numbers and hyphens: Use of 'e' **ALLOW** superfluous 'e' , e.g. propane-1-ol ('e' is kept if followed by consonant) **ALLOW** absence of 'e', e.g. propan-1,2-diol ('e' is omitted if followed by vowel)

Hyphens separate name from numbers: **ALLOW** absence of hyphens, e.g. propane 1,2 diol

Multiple locant numbers must be clearly separated: ALLOW full stops: e.g. 1.2 OR spaces: 1 2 DO NOT ALLOW e.g. 12

Locant numbers in formula must be correct **DO NOT ALLOW** propan-3-ol

Order of substituents should be alphabetical: **ALLOW** any order (as long as unambiguous), e.g. 2-chloro-3-bromobutane

ABBREVIATIONS van der Waal's forces ALLOW vdw forces OR VDW forces (and any combination of upper and lower cases)

F322

Mark scheme

C	Question		Answer	Marks	Guidance
1	(a)		C ₇ H ₁₂ ✓	1	
1	(b)	(i)		4	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above
			Product from Br ₂		IGNORE names
					WATCH for missed methyl stick
			Br		ALLOW added H shown,
			Br 🗸		і.е.
			Product from H ₂ /Ni		Н ОН Н
			Mixture of isomers from H ₂ O		
					ALLOW in either order
1	(b)	(ii)	Steam OR temperature ≥ 100 °C ✓	2	ALLOW H ₂ O(g) IGNORE pressure
			acid (catalyst) ✓		IGNORE High temperature / reflux
					ALLOW H^+ / named mineral acid / H_2SO_4 / H_3PO_4 DO NOT ALLOW 'weak acid' e.g. ethanoic acid

(Question		Answer	Marks	Guidance
1	(b)	(iii)		3	ANNOTATE ANSWER WITH TICKS AND CROSSES
			Curly arrow from double bond to Br of Br–Br \checkmark Correct dipole shown on Br–Br AND curly arrow showing breaking of Br–Br bond \checkmark $\delta_{\rm Br}$		Curly arrow must start from bond and go to correct atom DO NOT ALLOW any other partial charges e.g. shown on C=C bond
			\overrightarrow{AND} $\overrightarrow{Correct carbocation with + charge on C}_{AND}$ $\overrightarrow{Curly arrow from Br} \text{ to C}^+ \text{ of carbocation } \checkmark$ \overrightarrow{OR} \overrightarrow{OR} $\overrightarrow{Br} \xrightarrow{Br} \overrightarrow{Br}$		DO NOT ALLOW δ+ on C of carbocation. IF C atoms are displayed IGNORE missing bonds to H atoms Curly arrow must come from a lone pair on Br ⁻ OR from the negative sign of Br ⁻ ion (then lone pair on Br ⁻ ion does not need to be shown)
			Note: '+' and '' are fine for charge (circles used for clarity)		
1	(b)	(iv)	electrophilic addition ✓	1	
			Total	11	

C	Question		Answer	Marks	Guidance
2	(a)		(series of compounds with the) same functional group OR same/similar chemical properties/reactions ✓	2	IGNORE reference to physical properties IGNORE same general formula
			each successive/subsequent member differs by $CH_2 \checkmark$		Differs by CH ₂ is not sufficient (<i>no successive</i>) DO NOT ALLOW same empirical OR molecular formula
2	(b)		$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2 \checkmark$	2	ALLOW correct molecular OR structural OR displayed OR skeletal formula OR mixture of the above IGNORE state symbols
			warm OR stated temperature between 20 ^o C and 45 ^o C AND anaerobic OR absence of air/oxygen ✓		DO NOT ALLOW acidic or alkaline conditions ALLOW conditions shown in the equation A limited supply of oxygen is NOT sufficient IGNORE pressure IGNORE yeast <i>(in question)</i>

F322

Mark scheme

Q	Questi	ion	Answer	Marks	Guidance
2	2 (c)			2	ANNOTATE ANSWER WITH TICKS AND CROSSES
			Alcohols have hydrogen bonds (and van der Waals' forces) \checkmark		ALLOW reference to specific compounds e.g. comparing methane and methanol
			Hydrogen bonds are stronger than van der Waals' forces (in alkanes) ✓		Second marking point requires BOTH types of intermolecular forces in response i.e comparison of hydrogen bonds AND van der Waals is essential
					DO NOT ALLOW the second mark for a comparison of van der Waals' and hydrogen bonds between alcohols and water
					ALLOW more energy required to break hydrogen bonds than van der Waals' forces
					ALLOW it is harder to overcome the hydrogen bonds than van der Waals' forces
					IGNORE more energy is needed to break bonds
2	(d)		2-methylpropan-1-ol has less surface (area of) contact OR	2	ANNOTATE ANSWER WITH TICKS AND CROSSES Both answers need to be comparisons ALLOW ORA throughout
			fewer points of contact ✓		Reference to just surface area / closeness of molecules is not sufficient
			2-methylpropan-1-ol has fewer/weaker van der Waals' forces OR		IGNORE reference to H bonds
			less energy required to break van der Waals' forces in 2-methylpropan-1-ol ✓		IGNORE less energy is needed to break bonds
2	(e)	(i)	Elimination OR dehydration \checkmark	1	

C	Quest	ion	Answer	Marks	Guidance
2	(e)	(ii)	IF answer = 14.0 OR 14.1 g award 3 marks	3	ANNOTATE ANSWER WITH TICKS AND CROSSES
					ALLOW ECF at each stage
			actual		ALLOW 3 SF up to calculator value correctly rounded for intermediate values
			$n(C_5H_8) \text{ produced} = \frac{5.00}{68.0} = 0.0735 \text{ (mol)} \checkmark$		ALLOW expected mass $C_5H_8 = 5.00 \times \frac{100}{45.0} = 11.111$ (g)
			theoretical $n(C_5H_9OH) = n(C_5H_8) = 0.0735 \times \frac{100}{45.0} = 0.163 \text{ (mol)} \checkmark$		ALLOW Mass C_5H_9OH reacted = 0.0735 × 86.0 = 6.321 (g)
					ALLOW Mass of C ₅ H ₉ OH used = $6.321 \times \frac{100}{45.0} = 14.0$ OR 14 (g)
			Mass of $C_5H_9OH = 0.163 \times 86.0 = 14.0$ (g) OR 14 g OR 14.1 g \checkmark (use of unrounded values in calculator throughout)		ALLOW 2 SF up to calculator value correctly rounded for mass of C_5H_9OH
					Note: 2.84 OR 2.85 g would get 2 marks (<i>use of 45.0/100 instead of 100/45.0</i>) 13.76 OR 13.8 would get 2 marks (<i>use of 0.16 for moles C</i> ₅ H_9OH)

Mark scheme

	Question		on	Answer	Marks	Guidance
2	2	(f)	(i)		1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above
				CI + NaOH		ALLOW equation with OH ⁻ as reactant and Cl ⁻ product e.g (CH ₃) ₃ CCH ₂ Cl + OH ⁻ \rightarrow (CH ₃) ₃ CCH ₂ OH + Cl ⁻
						IGNORE equations with KOH/H ₂ O as reactant <i>(question states sodium hydroxide)</i>
						IGNORE molecular formulae (question requires structures)

Question	Answer	Marks	Guidance
2 (f) (ii)	$\bigvee_{i \in H} f_{i} = \int_{i \in H} f_{i} f_{i} = \int_{i \in H} f_{i} = \int_{i$	2	Curly arrow must come from lone pair on O of HO ⁻ OR OH ⁻ OR from minus sign on O of HO ⁻ ion (No need to show lone pair if curly arrow came from negative charge) NOTE: ALLOW mechanism involving ANY halogenoalkane as structures have been assessed in 2(f)(i) ALLOW S _N 1 mechanism: First mark Dipole shown on C–Cl bond, C ⁵⁺ and Cl ⁵⁻ AND curly arrow from C–Cl bond to Cl atom \checkmark Second mark Correct carbocation AND curly arrow from HO ⁻ to carbocation Second mark Correct carbocation AND curly arrow from HO ⁻ to carbocation Second mark Correct carbocation AND curly arrow from HO ⁻ to carbocation Second mark Correct carbocation AND curly arrow from HO ⁻ to carbocation Second mark Correct carbocation AND curly arrow from HO ⁻ to carbocation Second mark Correct carbocation AND curly arrow from HO ⁻ to carbocation Second mark Correct carbocation AND curly arrow from HO ⁻ to carbocation Second mark Correct carbocation AND curly arrow from HO ⁻ to carbocation Second mark Correct carbocation AND curly arrow from HO ⁻ to carbocation Second mark Correct carbocation AND curly arrow from HO ⁻ to carbocation Second mark Correct carbocation AND curly arrow from HO ⁻ to carbocation
	Total	15	

Q	Question		estion Answer I		Guidance
3	(a)	(i)	IF $\Delta H_r = -347$ (kJ mol ⁻¹) award 4 marks IF $\Delta H_r = (+)347$ (kJ mol ⁻¹) award 3 marks (incorrect sign)	4	ANNOTATE ANSWER WITH TICKS AND CROSSES
			Moles Amount, $n(CuSO_4)$, calculated correctly = 0.0125 (mol) \checkmark		
			Energy q calculated correctly = 4336.75 (J) OR 4.33675 (kJ) \checkmark		Note: <i>q</i> = 25.0 × 4.18 × 41.5
					ALLOW 3 SF up to calculator value of 4336.75 J IGNORE sign IGNORE working
			Calculating ΔH correctly calculates ΔH in kJ mol ⁻¹ to 3 or more sig figs \checkmark		Note: from 4336.75 J and 0.0125 mol $\Delta H = (-)346.940$ kJ mol ⁻¹ IGNORE sign at this intermediate stage ALLOW ECF from <i>n</i> (CuSO ₄) and/or energy released
			Rounding and Sign calculated value of ΔH rounded to 3 sig. fig. with minus sign \checkmark		Final answer must have correct sign and three sig figs
					Answer is still –347 from rounding of q to 4340 J
3	(a)	(ii)	Minimum mass = $0.0125 \times 24.3 \times 1.25 = 0.38(0)$ g \checkmark	1	ALLOW ECF for mass correctly rounded to 2 dp from incorrect moles of CuSO ₄ in 3(a)(i)

Q	Question		Answer	Marks	Guidance
3	(b)	(i)	(enthalpy change that occurs) when one mole of a substance ✓	3	ALLOW energy required OR energy released ALLOW one mole of a compound OR one mole of an element
			completely combusts OR reacts fully with oxygen ✓		ALLOW combusts in excess oxygen ALLOW burns in excess oxygen Combusts in excess air is not sufficient
3	(b)	(ii)	298 K / 25 °C AND 1 atm / 100 kPa / 101 kPa / 10 ⁵ Pa / 1 bar ✓ IF answer = -281 (kJ mol ⁻¹), award 2 marks IF answer = (+)281 (kJ mol ⁻¹), award 1 mark	2	IGNORE reference to concentration ANNOTATE ANSWER WITH TICKS AND CROSSES
			Working for C AND H ₂ seen anywhere $9 \times (-)394$ AND $10 \times (-)286$ OR (-)3546 AND (-)2860 OR (-)6406 ✓ Calculates ΔH_c correctly -64066125 = -281 kJ mol ⁻¹ ✓		IF there is an alternative answer, check to see if there is any ECF credit possible Common incorrect answers are shown below Award 1 mark for 5445 (not used × 9 and × 10) 2871 (not used × 9) 2293 (not used × 10)
3	(c)	(i)	(Average enthalpy change) when one mole of bonds \checkmark of (gaseous covalent) bonds is broken \checkmark	2	IGNORE energy required OR energy released DO NOT ALLOW bonds formed IGNORE heterolytic/homolytic

Qı	Question		Answer	Marks	Guidance
3	(c)	(ii)	IF answer = (+)1062 (kJ mol ^{−1}), award 3 marks IF answer = −1062 (kJ mol ^{−1}), award 2 marks	3	ANNOTATE ANSWER WITH TICKS AND CROSSES
			(∆ <i>H</i> for bonds broken =) 2580 (kJ mol ⁻¹) OR 1652 AND 928 (kJ mol ⁻¹) ✓		IGNORE sign
			$(\Delta H \text{ for bonds formed } =) 1308 (kJ mol^{-1}) \checkmark$		IGNORE sign
			(bond enthalpy CO = 2580 – 1308 – 210) = (+)1062 (kJ mol [−] ¹) ✓		ALLOW ECF IGNORE rounding of 1062 to 1060 and credit 1062 from working Award 2 marks for ±1272 (from ±(2580 - 1308)) ±1482 (from ±(2580 - 1308 + 210))
			Total	15	

C	Questi	ion	Answer	Marks	Guidance
4	(a)	(i)	Equilibrium (position) shifts to right AND turns paler (brown) ✓	2	ALLOW turns colourless IGNORE initially goes darker (brown) Note: ALLOW suitable alternatives for 'to right', e.g.: towards products OR towards N ₂ O ₄ OR in forward direction OR favours the right IGNORE responses in terms of rate
			Right-hand side has fewer (gaseous) moles/molecules OR left-hand side has more (gaseous) moles/molecules ✓		
4	(a)	(ii)	Equilibrium (position) shifts to left AND turns darker/deeper (brown) ✓	2	ALLOW turns brown Note: ALLOW suitable alternatives for 'to left', e.g.: towards reactants OR towards NO ₂ OR in reverse direction OR favours the left IGNORE comments about the 'exothermic side' or
			(Forward) reaction is exothermic OR (forward) reaction gives out heat OR reverse reaction is endothermic OR reverse reaction takes in heat ✓		 'endothermic side' ALLOW 'equilibrium (position) shifts left AND in the endothermic direction' for second marking point IGNORE responses in terms of rate

(Questio	on	Answer	Marks	Guidance
4	Questio	on	Answer Addition of acid [H ⁺] OR H ⁺ increases AND equilibrium (position) shifts to right ✓ Addition of alkali	Marks 2	GuidanceANNOTATE ANSWER WITH TICKS AND CROSSESIGNORE amount of acid increases (in question)ALLOW (added) acid reacts with CrO_4^{2-} Note: ALLOW suitable alternatives for 'to right', e.g.:towards productsOR towards $Cr_2O_7^{2-}$ / H_2O OR in forward directionOR favours the right
			Alkali reacts with H ⁺ OR alkali removes H ⁺ AND equilibrium (position) shifts to left ✓		ALLOW H ⁺ + OH ⁻ → H ₂ O ALLOW alkali reacts with (added) acid Note: ALLOW suitable alternatives for 'to left', e.g.: towards reactants OR towards CrO_4^{2-} / H ⁺ OR in reverse direction OR favours the left IGNORE just H ⁺ concentration decreases (needs role of alkali) IGNORE concentration of water increases (needs role of alkali)

Question	Answer	Marks	Guidance
4 (c) (i)	$E_{a}: without catalyst$ $E_{a}: with catalyst$ $E_{c}: with catalyst$ $Zn(s) + H_{2}SO_{4}(aq)$ AH $ZnSO_{4}(aq) + H_{2}(g)$ Progress of reaction	3	ANNOTATE ANSWER WITH TICKS AND CROSSES
	Zn and H_2SO_4 on LHS AND ZnSO ₄ + H_2 on RHS \checkmark		IGNORE state symbols.
	ΔH labelled with product below reactant AND arrow downwards \checkmark		ΔH : DO NOT ALLOW $-\Delta H$ ALLOW this arrow even if it has a small gap at the top and bottom i.e. does not quite reach reactant or product line
	$E_{\rm a}$ AND $E_{\rm c}$ correctly labelled with $E_{\rm c}$ below $E_{\rm a}$ \checkmark		E_a : ALLOW no arrowhead or arrowheads at both ends of activation energy line The E_a line must point to maximum (or near to the maximum) on the curve OR span approximately 80% of the distance between reactants and maximum regardless of position ALLOW AE or A_E for E_a

F322

F322

Qı	uestio	n	Answer	Marks	Guidance
4	(c)	(ii)		4	ANNOTATE ANSWER WITH TICKS AND CROSSES
			Number of Midecales		Curve must start at origin. The limit of acceptability is that the curve must start within the first small square nearest the origin.
					Curve must not touch the x-axis at higher energy
			Bnergy		IGNORE a slight inflexion on the curve
			Correct drawing of a Boltzmann distribution curve \checkmark		DO NOT ALLOW two curves DO NOT ALLOW a curve that bends up at the end by more than one small square
			Axes labelled y axis: (number of) molecules AND x axis: (kinetic) energy ✓		ALLOW particles instead of molecules on y axis DO NOT ALLOW enthalpy for x-axis label DO NOT ALLOW atoms instead of particles or molecules ALLOW ECF for the subsequent use of atoms (instead of molecules or particles)
			Catalyst lowers the activation energy (by providing an alternative route) \checkmark		ALLOW annotations on Boltzmann distribution diagram
			QWC – (With a catalyst a) greater proportion of molecules with energy greater than activation energy OR (With a catalyst a) greater proportion of molecules with energy equal to the activation energy OR		QWC requires more molecules have/exceed activation energy/ E_a . IGNORE more molecules have enough energy to react for the QWC mark (as not linked to E_a) ORA if states the effect with no catalyst
			(With a catalyst there is a) greater area under curve above the activation energy \checkmark		IGNORE (more) successful collisions

F322

C	Questi	ion	Answer	Marks	Guidance	
4	(d)	(i)	Catalyst (name or correct formula) AND balanced equation for the reaction catalysed ✓	1	Many possible responses but in practice it is likely that examples will be few, e.g. Fe AND N ₂ + $3H_2 \rightarrow 2NH_3$ V ₂ O ₅ /Pt AND 2SO ₂ + O ₂ $\rightarrow 2SO_3$ H ₂ SO ₄ /H ₃ PO ₄ AND C ₂ H ₄ + H ₂ O $\rightarrow C_2H_5OH$ Hydrogenation of an alkene: e.g. Ni AND C ₂ H ₄ + H ₂ $\rightarrow C_2H_6$ Esterification: e.g. H ₂ SO ₄ AND CH ₃ COOH + C ₂ H ₅ OH $\rightarrow CH_3COOC_2H_5 + H_2O$ ALLOW multiples for equation Note: the reaction chosen must be a feasible industrial reaction. If you see an alternative from the list above please contact your TL	
4	(d)	(ii)	Any two from: lower temperatures/lower pressures (can be used) ✓	2	IGNORE catalyst not used up in reaction IGNORE catalyst can be re-used	
			lower energy demand OR uses less fuel OR reduces CO₂ emissions ✓		IGNORE lower activation energy IGNORE cheaper IGNORE less greenhouse gases OR reduces global warming	
			(different reactions can be used with) greater atom economy OR less waste OR can reduce use of toxic solvents OR can reduce use of toxic reactants ✓		ALLOW increases atom economy ALLOW reduce use of hazardous/toxic/harmful/poisonous chemicals	
			(catalysts are often enzymes) generating specific products \checkmark			

(Question		Answer Ma		Guidance
4	(e)	(i)	Thunderstorms/lightning AND aircraft ✓	1	IGNORE car engines
4	(e)	(ii)	$NO + O_3 \rightarrow NO_2 + O_2 \checkmark$	2	
			$NO_2 + O \rightarrow NO + O_2 \checkmark$		ALLOW NO ₂ + O ₃ \rightarrow NO + 2O ₂
					IGNORE dots
					IGNORE $O + O_3 \rightarrow 2O_2$ IGNORE $2O_3 \rightarrow 3O_2$
		1	Total	19	

F322

Q	uestion	Answer	Marks	Guidance
5	(a)	C _n H _{2n+2} ✓	1	
5	(b)	Formation of NO and CO 2 marks	6	ANNOTATE ANSWER WITH TICKS AND CROSSES
		$\begin{array}{l} N_2 + O_2 \rightarrow 2NO \\ \textbf{AND} \\ C_8 H_{18} + 8^{1/2}O_2 \rightarrow 8CO + 9H_2O \checkmark \end{array}$		IGNORE state symbols ALLOW multiples, e.g. $\frac{1}{2}N_2 + \frac{1}{2}O_2 \rightarrow NO$ $2C_8H_{18} + 17O_2 \rightarrow 16CO + 18H_2O$
				ALLOW equations for incomplete combustion that give CO with CO ₂ and/or C e.g. $C_8H_{18} + 10^{1/2}O_2 \rightarrow 4CO + 4CO_2 + 9H_2O$
				ALLOW $C_8H_{18} + N_2 + 9\frac{1}{2}O_2 \rightarrow 8CO + 9H_2O + 2NO$
		(N ₂ and O ₂ react in) hot conditions (to form NO) OR incomplete combustion (of C ₈ H ₁₈ produces CO) \checkmark		IGNORE NO/CO form in engine (in question)
		Reducing NO and CO by catalytic converter4 marks		
		CO and NO/reactants are adsorbed (onto surface) \checkmark		ALLOW CO and NO /reactants bond to surface (of catalyst) DO NOT ALLOW absorbed
		Bonds in reactants weaken OR activation energy decreases ✓		ALLOW bonds weaken in CO OR bonds weaken in NO
		Reaction: 2CO + 2NO \longrightarrow 2CO ₂ + N ₂ \checkmark		IGNORE state symbols ALLOW multiples, e.g. $CO + NO \rightarrow CO_2 + \frac{1}{2}N_2$
		CO_2 and N_2 desorb (from surface) OR products desorb (from surface)		ALLOW products leave the surface/catalyst OR CO_2 and N_2 no longer bonded to surface/catalyst ALLOW deadsorption ALLOW diffuse away for desorption

Q	uestion	Answer	Marks	Guidance
5	(c)	structure of a branched saturated hydrocarbon with 8 C atoms ✓ structure of a cyclic saturated hydrocarbon with 8 C atoms ✓	3	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above
		Correct name for BOTH structures given ✓		DO NOT ALLOW names for hydrocarbons that do not have 8 C atoms
5	(d)	 ANY TWO from abundance (in atmosphere) OR amount (in atmosphere) OR (atmospheric) concentration OR percentage (in air) ✓ OR ability to absorb infrared/IR (radiation)✓ 	2	ALLOW absorption of infrared/IR
		OR residence time ✓		

Question	Answer	Marks	Guidance
5 (e)	IF answer = 259 (litres), award 4 marks	4	ANNOTATE ANSWER WITH TICKS AND CROSSES
	$(n(CO_2) \text{ decrease} = 5.6 \times 10^{5}/44.0) = 12727.27273 \text{ (mol)} \checkmark$ $(n(C_8H_{16}) \text{ decrease} = 12727 \div 8) = 1590.909091 \text{ (mol)} \checkmark$ $(\text{mass of } C_8H_{18} \text{ decrease}) = 1591 \times 114 = 181363.6364 \text{ (g)} \checkmark$		 ALLOW 3 SF up to calculator value correctly rounded throughout. NOTE: Be generous for values. Depending on any intermediate rounding, you may see a range of values for each stage. For guidance, the expected answers give unrounded values throughout. ALLOW ECF throughout for approaches that use moles CO₂/C₈H₁₈ IGNORE rounding of 259 to 260 and credit 259 from working ALLOW the following alternate method
	(C ₈ H ₁₈ decrease) = 181363.6364 ÷ 700 g = 259 (litres) ✓		$(n C_8 H_{18} \text{ in a litre} = 700 \div 114) = 6.140350877 \text{ (mol)} \checkmark$ $(n(CO_2) \text{ produced per litre} = 6.14 \times 8) = 49.12280702 \text{ (mol)} \checkmark$ $(\text{mass CO}_2 \text{ produced per litre} = 49.12 \times 44) = 2161.403509 \text{ (g)} \checkmark$ $(\text{annual reduction} = 5.6 \times 10^{5}/2161) = 259.0909091 \text{ (litres)} \checkmark$
	Total	16	

0	Questi	ion	Answer	Marks	Guidance	
6	(a)	(i)	Evidence that 84 (M ⁺ peak) = 6×14 (mass of CH ₂) \checkmark e.g. $\frac{84}{14} = 6$	1	IGNORE use of molecular formula e.g (6 × 12) + (12 × 1) = 84 <i>(use of empirical formula required)</i>	
6	(a)	(ii)	Structures of species 2 marks peak I CH ₃ CH=CH ✓ peak II CH ₃ CH=CHCH ₂ CH ₂ OR CH=CHCH ₂ CH ₂ CH ₃ ✓	3	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above ALLOW 1 mark if both correct structures are shown but in the incorrect columns ALLOW 1 mark for both correct structures if one or both have an 'end bond' ALLOW 1 mark for BOTH molecular formulae correct C ₃ H ₅ AND C ₅ H ₉ peak I peak II	
			+ charge on BOTH CORRECT species 1 mark CH ₃ CH=CH ⁺ AND CH ₃ CH=CHCH ₂ CH ₂ ⁺ ✓ peak I peak II		 ALLOW 'charge mark' for + charge on BOTH fragments with correct molecular formulae ALLOW 'charge mark' for + charge on BOTH CORRECT molecular formulae ALLOW + change anywhere in structures OR outside brackets 	

F322

Mark scheme

June 2016

C	Question		Answer		Guidance
6	(b)	(i)	<i>E</i> -hex-2-ene <i>Z</i> -hex-2-ene	2	ALLOW 1 mark if skeletal formulae of both <i>E</i> and <i>Z</i> hex-2-ene are shown but in the incorrect columns IF correct unambiguous structural OR displayed OR mixture of formulae are shown ALLOW 1 mark if both stereoisomers are in the correct columns e.g the following scores 1 mark $\boxed{\begin{array}{c} CH_3 \\ H \\ CH_2CH_2CH_3 \\ H \\ E-hex-2-ene \\ \end{array}} \xrightarrow{\begin{array}{c} CH_3 \\ CH_2CH_2CH_3 \\ H \\ H \\ CH_2CH_2CH_3 \\ CH_2CH_2CH_$
6	(b)	(ii)	 (carbon-carbon) double bond does not rotate OR has restricted rotation ✓ Each carbon atom of the double bond attached to (two) different groups/atoms ✓ 		
6	(c)	(i)	One repeat unit shown ✓ (could be any of the three repeat units shown)		ALLOW repeat unit at any point along the section provided that it works, e.g.

C	Question		Answer		Guidance
6	(c)	(ii)	Structure of pent-2-ene:	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
6	(c)	(iii)	(50,000/70 =) 714 OR 715 ✓	1	MUST be a whole number
			Total	11	

Que	estion	Answer		Guidance
7 ((a)	Empirical/molecular formula3 marksMole ratio C : H : Br is 2.44 : 5.70 : $0.814 \checkmark$ (Empirical formula) = C ₃ H ₇ Br \checkmark	5	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW $\frac{29.29}{12.0}:\frac{5.70}{1.0}:\frac{65.01}{79.9}$
		QWC (Molecular formula) = C_3H_7Br AND relative mass linked to 150 evidence \checkmark		Evidence could include a calculation of the relative mass of C_3H_7Br as 122.9 linking to M_r being less than 150
		Structural isomers 2 marks CH₃CH₂CH₂Br ✓ CH₃CHBrCH₃ ✓		 ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) DO NOT ALLOW missing H atom(s) in a displayed formula for one structure but ALLOW missing H atoms in subsequent structure Note: structures from an incorrect molecular formula will be credited on their merits. Please consult TL for advice on how to mark the subsequent parts of this question

C	Question		Answer		Marks	Guidance
7	(b)	(i)			6	ANNOTATE ANSWER WITH TICKS AND CROSSES
			<i>Infrared for G</i> 1700 cm ⁻¹ AND C=O/carbonyl group (broad) 2300–3600 cm ⁻¹ AND O–H			LOOK ON THE SPECTRUM for labelled peaks which can be given credit ALLOW ranges from <i>Data Sheet</i> : C=O within range 1640–1750 cm ⁻¹ ; (broad) O–H within range 2500–3300 cm ⁻¹
			Structures $CH_3CH_2CH_2OH \checkmark$ $CH_3CHOHCH_3 \checkmark$ $CH_3CH_2COOH \checkmark$	3 marks		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW CH ₃ CH ₂ CO ₂ H for carboxylic acid IGNORE names IGNORE labels DO NOT ALLOW missing H atom(s) in a displayed formula for one structure but ALLOW missing H atoms in subsequent structures
			Equation for formation of G $C_3H_8O + 2[O] \rightarrow C_3H_6O_2 + H_2O$	1 mark √		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above in equation

F322

C	Question		Answer		Guidance
7	(b)	(ii)	2 marks for correct ester. CH ₃ CH ₂ COOCH(CH ₃) ₂ ✓✓ Award 1 mark for: CH ₃ CH ₂ COOCH ₂ CH ₂ CH ₃ OR Ambiguous ester: CH ₃ CH ₂ COOC ₃ H ₇ ✓	2	 ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW C₂H₅CO₂CH(CH₃)₂ IF there is one bond and its H missing from the correct ester award 1 mark
	1		Total	13	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2016