Mark Scheme ## **Statistics 1 (4766) January 2005** ## **Mark Scheme** | Qn | Answe | r | | | | Mk | Comment | |-------|----------------------------|-----------|------------|------------------------|---------------|------|---------------------| | 1 | Time | freq | width | freq density | | | | | (i) | 40- | 26 | 5 | 5.2 | | | | | | 45- | 18 | 5 | 3.6 | | M1 | Calculation of fd's | | | 50- | 31 | 10 | 3.1 | | A1 | (accept values in | | | 60- | 16 | 10 | 1.6 | | | proportion) | | | 70- | 9 | 20 | 0.45 | | | | | | | | | | | | | | | CD times | | | | | | | | | usit | 5 - | | | | | | | | 물 | 4 - | _ | | | G1 | Linear scales | | | ਨੂੰ | 3 - | | | | O1 | | | | l la | 2 - | | | | G1 | Widths of bars | | | Frequency density | 1 - | | | | | | | | | - | T* 1 1 | | | G1 | Heights of bars | | | | 40 | 45 50 | 60 70 | 90 | | | | | | | | time (minutes) | (ii) | e.g. T | he distr | ibution i | s positively skewed | | | | | | | | | treme left of the dist | ribution. | E1 | | | | Accep | ot range | = 50 or | median = 52 | | E1 | | | 2 | | | | | | | | | (i) | Mean | = 83.93 | 5/8 = 10. | 49 | | B1 | | | | | | | 83.95 ² | | | | | | | 8 | 81.2119 | $-\frac{83.93}{2}$ | | | | | | Varia | | | <u> </u> | | M1 | | | | | 0 | 02727 | | | 1,11 | | | | | = 0 | .03737 | | | | | | | Standard deviation = 0.193 | | | | | A1 | | | | Stand | aru uev | iation = | U.17J | | | | | (ii) | 2 stan | dard de | viations | below mean | | | | | | | | | | | | | | | = 10.4 | 49 – 2(0 |).193) | | | M1 | Follow through if | | | | ` | , | | | | divisor n has been | | | = 10.1 | 104 | | | | | used above. | | | | | | | | | | | | but 10 | 0.04 < 1 | 0.104 | | | | | | | | | | | | A1 | | | | so 10. | .04 is ar | n outlier. | | | 731 | | | (iii) | | | | | | | | | (111) | | | | er than the others. T | | E1 | Appreciating need | | | | | | stance, faulty timing | , talse start | | for investigation | | | | | e discard | | | E1 | Comment in | | | | | | such as this could be | a genuinely | | context | | | tast ti | me, can | also rec | eive full credit. | | | | | Qn | Answer | Mk | Comment | |----------|---|----------------|--| | 3 | Let $P(B) = x$ | | | | | Using $P(AUB) = P(A) + P(B) - P(A \cap B)$ | M1 | Correct set of equations | | | 0.9 = 2x + x - 0.3
x = 0.4 | M1 | Correct solution | | | P(B) = 0.4 | A1 | | | 4
(i) | r 0 1 2 3 4
P(X = r) 6k 10k 12k 12k 10k
$50k = 1 \rightarrow k = 1/50$ | B1
B1
M1 | 1 value correct
all 3 correct
sum of 1 | | (ii) | E(X) = 110k = 2.2 | M1
A1 | sum of rp
cao | | (iii) | P(X > 2.2) = 22k = 0.44 | B1 | | | 5
(i) | $\binom{12}{8}$ ways of choosing forwards = 495 | M1
A1 | | | (ii) | | | | | | $\binom{12}{8}$ x $\binom{11}{7}$ ways of choosing team | M1
M1 | Product with (i) backs | | | =495x330 = 163350 | A1 | cao | | 6
(i) | P(Correct forecast) = $\frac{55+128+81}{365} = \frac{264}{365}$ | M1
A1 | Numerator | | (ii) | P(Correct forecast given sunny forecast) | | | | | $=\frac{55}{75}=0.733$ | M1
A1 | Denominator | | (iii) | P(Correct forecast given wet weather) | | | | , · | $=\frac{81}{117}=0.692$ | M1
A1 | Denominator | | (iv) | P(Cloudy weather given correct forecast) | | | | | $=\frac{128}{264}=0.485$ | M1
A1 | Denominator | | Qn | Answer | Mk | Comment | | 7
(i)
A | Median distance = 88 th value = 480 | M1
A1 | Within 5 cao | |---------------|--|----------------|--| | В | Lower Quartile = 44 th value = 320 | B1 | | | | Upper Quartile = 132 nd value = 680 | B1 | | | | Interquartile range = $680 - 320 = 360$ | M1 | ft | | (ii) | 0 320 480 680 1200 | G1
G1
G1 | Basic idea Linear 0 - 1200 Box including median (accurate) | | (iii) | Distance Frequency $0 < d \le 200$ 20 $200 < d \le 400$ 44 $400 < d \le 600$ 54 $600 < d \le 800$ 32 $800 < d \le 1000$ 19 $1000 < d \le 1200$ 7 | M1
M1 | Correct classes
Correct
frequencies | | (iv) | Mid (x) f fx 100 20 2000 300 44 13200 500 54 27000 700 32 22400 900 19 17100 1100 7 7700 176 89400 | M1
M1 | mid points
fx | | | Estimate of mean = 507.95 | A1 | | | (v) | Mid point of first class now 150 Total increase of 1000 New estimate of mean = 513.6 | M1
A1 | 150 | | (vi) | The point (0,0) would move to (100,0) | E1
E1 | point (0,0)
point (100,0) | | Qn | Answer | Mk | Comment | | 8 | Number not turning up $X \sim B(16,0.2)$ | | | |-------|---|----------------------|--| | (i) | $P(X=0) = 0.8^{16} = 0.0281$ | M1
A1 | 0.8 ¹⁶ or tables | | (ii) | $P(X > 3) = 1 - P(X \le 3) \text{ or } P(X \le 12)$
= 1 - 0.5981 = 0.4019 | M1
M1
A1 | Manipulation
Use of tables | | (iii) | $X \sim B(17,0.2) \rightarrow P(X \ge 1) = 0.9775$
Greater than 0.9 so acceptable | M1
A1
E1 | B(17,0.2)
0.9775 | | (iv) | $X \sim B(18,0.2) \rightarrow P(X \ge 2) = 0.9009$
Can make 18 appointments | M1
A1
A1 | 18 and ≥2
0.9009
18 ok | | | $X \sim B(19,0.2) \rightarrow P(X \ge 3) = 0.7631$
Now $X \sim B(20,p)$ | M1 | 19 and ≥3 | | (v) | Let p be probability of not turning up. H_0 : $p = 0.2$ H_1 : $p \neq 0.2$ | B1
B1
B1 | | | | $P(X \le 1) = 0.0692 > 2.5\%$ cannot reject H_0 conclude that the proportion of patients not turning up is unchanged. | M1
M1
A1
E1 | 0.0692
correct comparison
cannot reject H ₀ |