

General Certificate of Education (A-level) January 2011

Physics B: Physics in Context PHYB2

(Specification 2455)

Unit 2: Physics keeps us going

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

NOTES

Letters are used to distinguish between different types of marks in the scheme.

M indicates OBLIGATORY METHOD MARK

This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK

This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK

These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK

This is a mark which is independent of M and C marks.

ecf is used to indicate that marks can be awarded if an error has been carried forward (ecf must be written on the script). This is also referred to as a 'transferred error' or 'consequential marking'.

Where a correct answer only (**cao**) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.

cnao is used to indicate that the answer must be numerically correct but the unit is only penalised if it is the first error or omission in the section (see below).

Marks should be awarded for **correct** alternative approaches to numerical question that are not covered by the marking scheme. A correct answer from working that contains a physics error (PE) should not be given credit. Examiners should contact the Team Leader or Principal Examiner for confirmation of the validity of the method, if in doubt.

GCE Physics, Specification B: Physics in Context, PHYB2, Physics keeps us going

Que	stion 1			
(a)		(has magnitude but) no direction/has only magnitude	B1	2
(b)	(i)	1N: 3.9 or 4 cm/1 cm: 0.25 or 0.26 N	B1	1
(b)	(ii)	completes parallelogram correctly/or 'nose to tail'	M1	
		measures/draw correct diagonal	M1	3
		2.1 ± 0.1 N	A1	
			Total	6

Question 2			
(a)	constant horizontal (component of) velocity/no horizontal force or acceleration	B1	2
	accelerates vertically/increasing vertical (component) of velocity	B1	
(b)	appropriate curve starting at same place with shorter trajectory	B1	1
		Total	3

Question 3			
(a)	infrared/IR	B1	1
(b)	1×10^{-9} (m) to 400×10^{-9} (m)	B1	1
(c)	(increased risk of) cancer/sterilisation/mutation	B1	1
		Total	3

Question 4			
(a)	uses 1020/9.81 (to find mass)/m = W/g	C1	
	divides by 1030/uses volume = mass/density	C1	•
	0.101 m ³ cao	A 1	3
	their 104 correctly multiplied by 9.81 (look for 1020 (N))		
(b)	floats (to surface)	B1	2
	upthrust greater than weight	В1	2
		Total	5

Question 5			
	multiplies the efficiencies together as percentages or decimals	C1	c
	0.291 (29.1%) or 0.29 (29%)	A 1	2
		Total	2

Question 6			
	collision between electrons and ions or atoms	B1	
	(electrons lose kinetic energy and) ions vibrate more or have more vibrational kinetic energy	B1	2
		Total	2

Question 7			
(a)	840 × 2.3	C1	•
	1900 (J)/1930 (J)	A1	2
(b) (i)	uses gradient	C1	
	data extraction correct – 350 N, 0.3 m	C1	4
	1170	A 1	4
	N m ⁻¹	B1	
(b) (ii)	uses area	B1	
	6.5 to 7.0 squares or 1 square is equivalent to 5 J/area is ½ base × height	B1	3
	32.5 to 35 (J)	B1	
		Total	9

Question 8			
(a)	more charge carriers available	B1	
	(internal) energy used to liberate electrons	В1	3
	more electrons is more significant than additional vibration of lattice ions	B1	
(b) (i)	(resistance of LDR is) 400 (Ω) seen – may be on diagram	C1	
	their 400 + 150 seen	C1	3
	2.45 or 2.5 V	A 1	
(b) (ii)	reduces resistance of LDR/correct example data from graph	B1	•
	increase share of voltage taken by variable resistor (owtte)	В1	2
		Total	8

Question 9			
(a)	substitutes into $E = UA\Delta\theta$ for any part – insulated or not	C1	
	uses standard values	C1	_
	adds their values for all four parts	C1	4
	2660 W cao but condone sf	A 1	
(b)	walls	B1	
	area × (difference between insulated and non-insulated) <i>U</i> -value is recognised or calculated or <i>Q</i> or change in <i>Q</i> is calculated for new values	B1	3
	walls = 36 (432), windows = 32 (403), roof = 21 (252)	B1	
		Total	7

Question 10			
(a)	$0.0029 \text{ or } \mathbf{use of } c = f\lambda$	C1	
	5760 K cao condone sf	C1	3
	changes their 5760 correctly to °C (5490)	A 1	

(b)	The marking scheme for this question includes an overall assessment for the quality of written communication (QWC). There are no discrete marks for the assessment of QWC but the candidate's QWC in this answer will be one of the criteria used to assign a level and award the marks for this question.	
	Descriptor – an answer will be expected to meet most of the criteria in the level descriptor.	
	Level 3 – Good	
	claims supported by an appropriate range of evidence	
	good use of information or ideas about physics, going beyond those given in the question	5-6
	argument well structured with minimal repetition or irrelevant points	
	accurate and clear expression or ideas with only minor errors of grammar, punctuation and spelling	
	Level 2 – Modest	
	claims partly supported by evidence	
	good use of information or ideas about physics given in the question but limited beyond this	3-4
	the argument shows some attempt at structure	
	the ideas are expressed with reasonable clarity but with a few errors of grammar, punctuation and spelling	
	Level 1 – Limited	
	valid points but not clearly linked to an argument structure	
	limited use of information about physics	1-2
	unstructured	
	errors in spelling, punctuation and grammar of lack of fluency	
	Level 0	
	incorrect, inappropriate or no response	0
	Examples of the sort of information or ideas that might be used to support an argument:	
	Sun's peak frequency in the visible range	
	because Sun is hot	
	(much) energy radiated by Earth is IR	
	because Earth is cooler	
	energy radiated by Earth is trapped by (atmospheric) gases	
	carbon dioxide and/or water vapour and/or methane in atmosphere have an effect	
	these gases permit short wavelength radiation though they prevent longer wavelength radiation from escaping	

Question 1	1		
(a) (i)	divides a speed (from the table) by 10.9	C1	
	converts speed to m s ⁻¹ (26.7)	C1	3
	$2.4/2.45/2.5 (\text{m s}^{-2})$	A 1	
(a) (ii)	multiples 2.10 by a mass from the table	C1	2
	2810 (N)	A 1	2
(b)	any two from		
	fuel consumption is high	B1	
	emissions will also be high	B1	
	max speed is very high	B1	
	any one from		max 3
	wasteful of resources	B1	
	links high emissions to global warming/specified environmental issue	B1	
	road safety implications of high speed	B1	
		Total	8

Question 12				
(a)		0.5 × 1500 × 1.23 × 14 ³	C1	2
		2.53 × 10 ⁶ (W)	A1	
(b)	(i)	uses <i>V</i> = <i>A</i> × <i>d</i> eg 7.5 3.4 seen	C1	3
		uses $E_p = mg\Delta h$	A1	
		4.4 × 10 ¹² (condone 8.8 × 10 ¹²)	A1	
(b)	(ii)	their (b) (i)/any time (eg 5 or 3600 or 18000)	C1	2
		2.4 × 10 ⁸ (W) ecf	A1	
(b)	(iii)	any two from		
		lack of available/appropriate sites	B1	2
		high capital cost (compared with power o/p)	B1	
		environmental objections	B1	
		not available 24 hours/day	B1	
		not insufficient tide range in UK		
			Total	7